R语言广义加性混合模型(GAMM)分析长沙气象因子、空气污染、PM2.5浓度、显著性检验、逐日变化可视化(下)

简介: R语言广义加性混合模型(GAMM)分析长沙气象因子、空气污染、PM2.5浓度、显著性检验、逐日变化可视化

R语言广义加性混合模型(GAMM)分析长沙气象因子、空气污染、PM2.5浓度、显著性检验、逐日变化可视化(上):https://developer.aliyun.com/article/1497167


image.png

image.png

不同季节PM2.5的逐日变化 Diurnal variations of PM2.5in different months


不同季节PM2.5的逐日变化是指在不同季节中,每天PM2.5浓度的变化情况。PM2.5是指空气中直径小于或等于2.5微米的颗粒物,它们对人体健康有害。这些颗粒物主要来自于工业排放、交通尾气、燃烧过程和自然来源等。

在不同季节中,PM2.5的逐日变化可能受到多种因素的影响。例如,冬季由于采暖需求增加,燃煤和燃气的使用量增加,导致PM2.5浓度较高。而夏季由于气温升高,光化学反应增多,加上交通尾气和工业排放的贡献,PM2.5浓度也可能较高。

此外,气象条件也会对PM2.5的逐日变化产生影响。例如,风速、风向、降雨等天气因素都会影响PM2.5的扩散和沉降,从而影响其浓度。

因此,不同季节中PM2.5的逐日变化是一个动态的过程,受到多种因素的综合影响。通过对这种变化的研究和监测,可以更好地了解和应对空气质量问题。

grep( date,airquality$日期)),]$PM2.5.ug.m3.  
plot(Mar,type="p",col=j,ylab="95% CI")

3-5月份

image.png

6-8月份

image.png

9-11 月份

image.png

12-2 月份

image.png

Correlation coefficient and COD versus distance between the stations 相关系数和COD随站间距离的变化


相关系数是用来衡量两个变量之间的线性关系强度和方向的统计指标。它的取值范围在-1到1之间,其中1表示完全正相关,-1表示完全负相关,0表示无相关性。

相关系数和站间距离的变化之间可能存在一定的关系。如果两个变量之间的相关系数较高(接近1或-1),则说明它们之间存在较强的线性关系。在这种情况下,站间距离的变化可能较小,因为变量之间的关系比较稳定。相反,如果两个变量之间的相关系数较低(接近0),则说明它们之间的线性关系较弱或不存在。在这种情况下,站间距离的变化可能较大,因为变量之间的关系较为不稳定。

abline(lm(cordata~distdata),col="red")

image.png

image.png

GAMM模型分析温度 、湿度、风速、能见度、气压对PM2.5的影响

GAMM(Generalized Additive Mixed Models)是一种灵活的统计模型,结合了广义可加模型(GAM,Generalized Additive Models)和混合模型(Mixed Models)的优点。它可以用于解决包含非线性关系和随机效应的数据建模问题。


点击标题查阅往期内容


R语言广义相加模型 (GAMs)分析预测CO2时间序列数据


01

02

03

04


GAMM模型主要用于处理长期观测数据和重复测量数据,其中数据可能受到时间、空间或其他相关因素的影响。GAMM模型具有以下特点:

  1. 广义可加模型(GAM)的优点:GAM模型可以通过非线性平滑函数来建模解释变量与响应变量之间的复杂关系,适用于非线性关系的建模。
  2. 混合模型(Mixed Models)的优点:GAMM模型可以处理数据中的随机效应,比如个体间的差异或层级结构中的变化。
  3. 可解释性:GAMM模型通过可加函数模型来描述数据,可以直观地解释模型中的每个平滑项的效应。

gamm(PM2.5.ug.m3.~s(平均温度.摄

image.png

image.png

image.png

summary(b$gam) # gam style summary of fitted model

image.png

simple checking plots 模型检验


image.png

用AR1残差项拟合模型

image.png

lme拟合的细节


image.png

image.png

拟合模型的Gam风格总结


image.png

模型检验


image.png

相关文章
|
29天前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
29天前
|
Web App开发 数据可视化 数据挖掘
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
|
29天前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
|
29天前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
29天前
利用R语言进行典型相关分析实战
利用R语言进行典型相关分析实战
|
29天前
|
机器学习/深度学习 算法
R语言分类回归分析考研热现象分析与考研意愿价值变现
R语言分类回归分析考研热现象分析与考研意愿价值变现
|
29天前
|
数据可视化 定位技术
R语言贝叶斯INLA空间自相关、混合效应、季节空间模型、SPDE、时空分析野生动物数据可视化
R语言贝叶斯INLA空间自相关、混合效应、季节空间模型、SPDE、时空分析野生动物数据可视化
|
29天前
|
机器学习/深度学习 数据可视化 算法
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为1
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
29天前
|
机器学习/深度学习 数据可视化 算法
R语言聚类分析、因子分析、主成分分析PCA农村农业相关经济指标数据可视化|数据分享
R语言聚类分析、因子分析、主成分分析PCA农村农业相关经济指标数据可视化|数据分享
|
29天前
|
机器学习/深度学习 监控 数据可视化
R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例2
R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例