【视频】线性混合效应模型(LMM,Linear Mixed Models)和R语言实现案例(三)

简介: 【视频】线性混合效应模型(LMM,Linear Mixed Models)和R语言实现案例

【视频】线性混合效应模型(LMM,Linear Mixed Models)和R语言实现案例(二)https://developer.aliyun.com/article/1485866


金鱼视觉

Cronly-Dillon和Muntz(1965; J. Exp. Biol 42: 481-493)用视运动反应来测量金鱼的色觉。在这里,我们将对数据进行拟合,包括测试的全部波长。5条鱼中的每一条都以随机的顺序在所有的波长下被测试。敏感度的值大表明鱼可以检测到低的光强度。视运动反应的一个重要特点是,鱼不习惯,在一个波长下的视觉敏感度的测量不太可能对后来在另一个波长下的测量产生影响。

读取和检查数据

  • 读取文件中的数据,并查看前几行以确保读取正确。
  • 使用交互图来比较不同光波长实验下的个体鱼的反应。
  • 使用什么类型的实验设计?*这将决定在拟合数据时使用的线性混合模型。

构建线性混合效应模型

  • 对数据拟合一个线性混合效应模型。可以用lmer()来实现。发现“畸形拟合”,“boundary (singular) fit: see ?isSingular

  • 绘制拟合(预测)值**。每条鱼的预测值和观察值之间的差异代表残差。
  • 你在(1)中做了什么假设?创建一个残差与拟合值的图,以检查这些假设之一。
  • 从保存的lmer对象中提取参数估计值。检查固定效应的结果。给出的系数与使用lm分析的分类变量的解释相同。
  • 检查随机效应的输出。我们的混合效应模型中再次出现了两个随机误差的来源。它们是什么?其中哪个对应于输出中的"(截距)",哪个对应于 "残差"?注意,在这个数据集中,其中一个变化源的估计标准差非常小。这就是畸形拟合信息背后的原因。鱼类之间的方差不太可能真的为零,但是这个数据集非常小,由于抽样误差,可能会出现低方差估计。
  • 生成基于模型的每个波长的平均敏感度的估计。
  • 各个波长之间的差异是否显著?生成lmer对象的方差分析表。这里测试的是什么效应,随机效应还是固定效应?解释方差分析结果。

*这是一个 "按实验对象 "的重复测量设计,因为每条鱼在每个实验下被测量一次。它本质上与随机完全区块设计相同(把每条鱼看作是 "区块")。

*可视化是首选,因为数据和拟合值都被绘制出来。请注意鱼与鱼之间的预测值是多么的相似。这表明在这项研究中,个体鱼之间的估计差异非常小。

*一般来说,在方差分析表中只测试固定效应。使用测试随机效应中没有方差的无效假设是可能的。

分析步骤

读取并检查数据。

x <- read.csv("fish.csv", 
        stringsAsFactors = FALSE)
head(x)

拟合一个线性混合效应模型。

该模型假设所有拟合值的残差为正态分布,方差相等。该方法还假设个体鱼之间的随机截距为正态分布。该方法还假设组(鱼)的随机抽样,对同一鱼的测量之间没有影响。

# # 1. 拟合混合效应模型。
## boundary (singular) fit: see ?isSingular

# 2. 这就为每条鱼分别绘制了拟合值。
vis(z)

# 3.测试假设
plot(z)

# 4. 提取参数估计值
summary(z)

# 6.  基于模型的平均敏感度估计 
means(z)

# 7. ANOVA方差分析


蓍草酚类物质的浓度

项目实验性地调查了国家公园的北方森林生态系统中施肥和食草的影响(Krebs, C.J., Boutin, S. & Boonstra, R., eds (2001a) Ecosystem dynamics of the Boreal Forest.Kluane项目. 牛津大学出版社,纽约)) ,目前的数据来自于一项关于植物资源和食草动物对底层植物物种防御性化学的影响的研究。

16个5x5米的小区中的每一个都被随机分配到四个实验之一。1)用栅栏围起来排除食草动物;2)用N-P-K肥料施肥;3)用栅栏和施肥;4)未实验的对照。然后,16块地中的每一块被分成两块。每块地的一侧(随机选择)在20年的研究中持续接受实验。每块地的另一半在头十年接受实验,之后让它恢复到未实验的状态。这里要分析的数据记录了欧蓍草(Achillea millefolium)中酚类物质的浓度(对植物防御化合物的粗略测量),欧蓍草是地块中常见的草本植物。测量单位是每克干重毫克丹宁酸当量。

可视化数据

  • 从文件中读取数据。
  • 检查前几行的数据。实验是作为一个有四个层次的单一变量给出的(而不是作为两个变量,围墙和肥料,用2x2因子设计的模型)。持续时间表示半块土地是否接受了整整20年的实验,或者是否在10年后停止实验。变量 "ch "是蓍草中酚类物质的浓度。
  • 画一张图来说明不同实验和持续时间类别中蓍草中的酚类物质的浓度。在每个实验和持续时间水平的组合中没有很多数据点,所以按组画条形图可能比按组画箱形图更好。
  • 添加线段来连接成对的点。

拟合一个线性混合效应模型

  • 使用的是什么类型的实验设计?*这将决定对数据的线性混合模型的拟合。
  • 在没有实验和持续时间之间的交互作用的情况下,对数据进行线性混合模型拟合。使用酚类物质的对数作为因变量,因为对数转换改善了数据与线性模型假设的拟合。
  • 可视化模型对数据的拟合。按持续时间(如果xvar是实验)或实验(如果xvar是持续时间)分开面板。visreg()不会保留配对,但会允许你检查残差。
  • 现在重复模型拟合,但这次包括实验和持续时间之间的相互作用。将模型与数据的拟合情况可视化。两个模型拟合之间最明显的区别是什么,一个有交互作用,另一个没有?描述包括交互项的模型 "允许 "什么,而没有交互项的模型则不允许。判断,哪个模型最适合数据?
  • 使用诊断图检查包括交互项的模型的线性混合模型的一个关键假设。
  • 使用拟合模型对象估计线性模型的参数(包括交互作用)。请注意,现在固定效应表中有许多系数。
  • 在上一步的输出中,你会看到 "随机效应 "标签下的 "Std.Dev "的两个数量。解释一下这些数量指的是什么。
  • 来估计所有固定效应组合的模型拟合平均值。
  • 生成固定效应的方差分析表。哪些项在统计学上是显著的?
  • 默认情况下,lmerTest将使用Type 3的平方和来测试模型项,而不是按顺序(Type 1)。用类型1来重复方差分析表。结果有什么不同吗?**

*实验采用了分块设计,即整个块被随机分配到不同的实验,然后将第二种实验(持续时间)的不同水平分配到块的一半。

*应该没有差别,因为设计是完全平衡的。


【视频】线性混合效应模型(LMM,Linear Mixed Models)和R语言实现案例(四)https://developer.aliyun.com/article/1485869

相关文章
|
7月前
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
|
7月前
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
3月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
4月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
7月前
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
46 3
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
7月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。