基于深度学习的停车场车辆检测算法matlab仿真

简介: 该文介绍了使用GoogLeNet进行停车场车辆检测的算法,基于深度学习的CNN模型,利用Inception模块提升检测效率。在matlab2022a中实现,通过滑动窗口和二分类交叉熵损失函数优化。文章展示了几张算法运行效果和测试结果的图片,并提供了一段核心代码示例,涉及图片读取、划分、特征提取和分类。为了适应任务,进行了数据集准备、滑窗参数设定,并以平均精度为评估标准。

1.算法运行效果图预览

image.png
image.png

上图测试结果如下图所示:

image.png

2.算法运行软件版本
matlab2022a

3.算法理论概述
随着城市交通管理和智慧停车系统的快速发展,停车场车辆检测已成为实现高效车位管理、智能计费的关键技术之一。深度学习,尤其是基于卷积神经网络(CNN)的目标检测技术,以其卓越的特征提取和模式识别能力,为停车场车辆检测提供了强大工具。

  GoogLeNet是一种创新的深度卷积神经网络,其核心是Inception模块。Inception模块通过多尺度并行卷积路径提取多维度特征,有效地提升了网络的表达能力和计算效率。GoogLeNet网络由一系列Inception模块堆叠而成,辅以辅助分类器和全局平均池化层,最终用于分类任务。针对停车场车辆检测任务,我们将其改造为基于滑动窗口的两阶段检测框架,即首先利用GoogLeNet提取图像特征,然后通过后处理步骤(如滑窗检测、非极大值抑制等)生成车辆检测结果。

  在停车场车辆检测任务中,GoogLeNet模型作为特征提取器,其损失函数主要体现在分类器部分。我们采用二分类交叉熵损失(Binary Cross-Entropy Loss, BCE Loss)衡量分类器预测车辆存在与否的准确性:

image.png

   模型训练时,首先在大规模通用图像数据集上预训练GoogLeNet,然后在停车场车辆检测数据集上进行微调,优化网络权重以适应车辆检测任务。

针对停车场车辆检测任务,需对GoogLeNet进行以下适应性调整:

数据集准备:收集大量包含停车场场景的图像,标注其内车辆的精确边界框。数据增强策略如翻转、旋转、缩放、光照变换等有助于提高模型泛化能力。

滑窗参数设定:依据停车场车辆的实际尺寸分布,合理设置滑动窗口的尺度和比例,确保覆盖各类车辆。

性能评估:使用平均精度(Average Precision, AP)等指标评价模型在停车场车辆检测上的性能。AP综合考虑了召回率和精确率,能全面反映模型在不同IoU阈值下的表现。

4.部分核心程序

```image = imread('image_test\test.jpg');
image2= image;

%图片划分大小
R = 10;
C = 21;
[W,H,k] = size(image);

MASK = zeros(W,H);
for i = 1:floor(W/R)
[i,floor(W/R)]
for j = 1:floor(H/C)
tmps = imresize(image(R(i-1)+1:Ri,C(j-1)+1:Cj,:),[224,224]);
[Predicted_Label, Probability] = classify(net, tmps);

    if double(Predicted_Label)==2
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1)+60;
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2);
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3);
    else
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1);
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2)+60;
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3);
    end
end

end

figure;
imshow(image);
figure;
imshow(image2);

```

相关文章
|
7天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
6天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
5天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
1月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
139 5
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
117 16
|
28天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
85 19
|
28天前
|
机器学习/深度学习 传感器 人工智能
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和架构设计,阐述了深度学习如何有效地从图像数据中提取特征,并在多个领域实现突破性进展。同时,文章也指出了训练深度模型时常见的过拟合问题、数据不平衡以及计算资源需求高等挑战,并提出了相应的解决策略。
85 7
|
1月前
|
机器学习/深度学习 自动驾驶 算法
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何利用这些原理进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习模型进行图像分类。最后,我们将讨论深度学习在图像识别领域的未来发展趋势和挑战。
|
1月前
|
机器学习/深度学习 数据采集 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的基本原理、优势以及面临的主要挑战。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率,同时指出了数据质量、模型泛化能力和计算资源等关键因素对性能的影响。
|
1月前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用及其面临的挑战。通过分析深度学习模型如卷积神经网络(CNN)的工作原理,我们揭示了这些模型如何有效地处理和识别图像数据。同时,文章也指出了当前深度学习在图像识别中遇到的一些主要问题,包括过拟合、数据集偏差和模型解释性等,为读者提供了对这一领域全面而深入的理解。