基于深度学习的停车场车辆检测算法matlab仿真

简介: 该文介绍了使用GoogLeNet进行停车场车辆检测的算法,基于深度学习的CNN模型,利用Inception模块提升检测效率。在matlab2022a中实现,通过滑动窗口和二分类交叉熵损失函数优化。文章展示了几张算法运行效果和测试结果的图片,并提供了一段核心代码示例,涉及图片读取、划分、特征提取和分类。为了适应任务,进行了数据集准备、滑窗参数设定,并以平均精度为评估标准。

1.算法运行效果图预览

image.png
image.png

上图测试结果如下图所示:

image.png

2.算法运行软件版本
matlab2022a

3.算法理论概述
随着城市交通管理和智慧停车系统的快速发展,停车场车辆检测已成为实现高效车位管理、智能计费的关键技术之一。深度学习,尤其是基于卷积神经网络(CNN)的目标检测技术,以其卓越的特征提取和模式识别能力,为停车场车辆检测提供了强大工具。

  GoogLeNet是一种创新的深度卷积神经网络,其核心是Inception模块。Inception模块通过多尺度并行卷积路径提取多维度特征,有效地提升了网络的表达能力和计算效率。GoogLeNet网络由一系列Inception模块堆叠而成,辅以辅助分类器和全局平均池化层,最终用于分类任务。针对停车场车辆检测任务,我们将其改造为基于滑动窗口的两阶段检测框架,即首先利用GoogLeNet提取图像特征,然后通过后处理步骤(如滑窗检测、非极大值抑制等)生成车辆检测结果。

  在停车场车辆检测任务中,GoogLeNet模型作为特征提取器,其损失函数主要体现在分类器部分。我们采用二分类交叉熵损失(Binary Cross-Entropy Loss, BCE Loss)衡量分类器预测车辆存在与否的准确性:

image.png

   模型训练时,首先在大规模通用图像数据集上预训练GoogLeNet,然后在停车场车辆检测数据集上进行微调,优化网络权重以适应车辆检测任务。

针对停车场车辆检测任务,需对GoogLeNet进行以下适应性调整:

数据集准备:收集大量包含停车场场景的图像,标注其内车辆的精确边界框。数据增强策略如翻转、旋转、缩放、光照变换等有助于提高模型泛化能力。

滑窗参数设定:依据停车场车辆的实际尺寸分布,合理设置滑动窗口的尺度和比例,确保覆盖各类车辆。

性能评估:使用平均精度(Average Precision, AP)等指标评价模型在停车场车辆检测上的性能。AP综合考虑了召回率和精确率,能全面反映模型在不同IoU阈值下的表现。

4.部分核心程序

```image = imread('image_test\test.jpg');
image2= image;

%图片划分大小
R = 10;
C = 21;
[W,H,k] = size(image);

MASK = zeros(W,H);
for i = 1:floor(W/R)
[i,floor(W/R)]
for j = 1:floor(H/C)
tmps = imresize(image(R(i-1)+1:Ri,C(j-1)+1:Cj,:),[224,224]);
[Predicted_Label, Probability] = classify(net, tmps);

    if double(Predicted_Label)==2
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1)+60;
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2);
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3);
    else
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1);
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2)+60;
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3);
    end
end

end

figure;
imshow(image);
figure;
imshow(image2);

```

相关文章
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的自适应学习算法研究与应用
在深度学习领域,传统的静态模型在处理动态环境和非平稳数据时面临挑战。本文探讨了自适应学习算法在深度学习中的重要性及其应用。通过分析自适应学习算法在模型参数、损失函数和数据分布上的应用,展示了其在提升模型鲁棒性和泛化能力方面的潜力。具体讨论了几种代表性的自适应学习方法,并探索了它们在现实世界中的应用案例,从而展示了其在处理复杂问题和动态数据中的效果。
6 0
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 一文看懂人工智能、机器学习、深度学习是什么、有什么区别!
**摘要:** 了解AI、ML和DL的旅程。AI是模拟人类智能的科学,ML是其分支,让机器从数据中学习。DL是ML的深化,利用多层神经网络处理复杂数据。AI应用广泛,包括医疗诊断、金融服务、自动驾驶等。ML助力个性化推荐和疾病预测。DL推动计算机视觉和自然语言处理的进步。从基础到实践,这些技术正改变我们的生活。想要深入学习,可参考《人工智能:一种现代的方法》和《深度学习》。一起探索智能的乐趣!
18 1
算法金 | 一文看懂人工智能、机器学习、深度学习是什么、有什么区别!
|
4天前
|
算法 JavaScript 决策智能
基于禁忌搜索算法的TSP路径规划matlab仿真
**摘要:** 使用禁忌搜索算法解决旅行商问题(TSP),在MATLAB2022a中实现路径规划,显示优化曲线与路线图。TSP寻找最短城市访问路径,算法通过避免局部最优,利用禁忌列表不断调整顺序。关键步骤包括初始路径选择、邻域搜索、解评估、选择及禁忌列表更新。过程示意图展示搜索效果。
|
4天前
|
机器学习/深度学习 算法
基于BP神经网络和小波变换特征提取的烟草香型分类算法matlab仿真,分为浓香型,清香型和中间香型
```markdown 探索烟草香型分类:使用Matlab2022a中的BP神经网络结合小波变换。小波分析揭示香气成分的局部特征,降低维度,PCA等用于特征选择。BP网络随后处理这些特征,以区分浓香、清香和中间香型。 ```
|
4天前
|
机器学习/深度学习 自然语言处理 前端开发
深度学习-[数据集+完整代码]基于卷积神经网络的缺陷检测
深度学习-[数据集+完整代码]基于卷积神经网络的缺陷检测
|
5天前
|
机器学习/深度学习 存储 计算机视觉
基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
|
5天前
|
机器学习/深度学习 存储 安全
基于YOLOv8深度学习的行人跌倒检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
基于YOLOv8深度学习的行人跌倒检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
|
5天前
|
机器学习/深度学习 传感器 算法
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
|
5天前
|
机器学习/深度学习 存储 监控
基于YOLOv8深度学习的无人机视角高精度太阳能电池板检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割
基于YOLOv8深度学习的无人机视角高精度太阳能电池板检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割
|
5天前
|
机器学习/深度学习 存储 监控
基于YOLOv8深度学习的高压输电线绝缘子缺陷智能检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测
基于YOLOv8深度学习的高压输电线绝缘子缺陷智能检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测

热门文章

最新文章