灰色关联分析(Grey Relation Analysis,GRA)中国经济社会发展指标

简介: 灰色关联分析(Grey Relation Analysis,GRA)中国经济社会发展指标

灰色关联分析包括两个重要功能。

第一项功能:灰色关联度,与correlation系数相似,如果要评估某些单位,在使用此功能之前转置数据。第二个功能:灰色聚类,如层次聚类。

灰色关联度

灰色关联度有两种用法。该算法用于测量两个变量的相似性,就像\`cor\`一样。如果要评估某些单位,可以转置数据集。

*一种是检查两个变量的相关性,数据类型如下:

| 参考| v1 | v2 | v3 |

| ----------- |||| ---- | ---- |

| 1.2 | 1.8 | 0.9 | 8.4 |

| 0.11 | 0.3 | 0.5 | 0.2 |

| 1.3 | 0.7 | 0.12 | 0.98 |

| 1.9 | 1.09 | 2.8 | 0.99 |

reference:参考变量,reference和v1之间的灰色关联度...近似地测量reference和v1的相似度。

*另一个是评估某些单位的好坏。

| 单位| v1 | v2 | v3 |

| ----------- |||| ---- | ---- |

| 江苏| 1.8 | 0.9 | 8.4 |

| 浙江| 0.3 | 0.5 | 0.2 |

| 安徽 0.7 | 0.12 | 0.98 |

| 福建| 1.09 | 2.8 | 0.99 |

示例

##生成数据
#
  # 异常控制 #
  if (any(is.na(df))) stop("'df' have NA" )
  if (distingCoeff<0 | distingCoeff>1) stop("'distingCoeff' must be in range of \[0,1\]" )
  
  
  
  diff = X  #设置差学列矩阵空间
  
  for (i in
  mx = max(diff)
  
  
  #计算关联系数#
  relations = (mi+distingCoeff\*mx) / (diff + distingCoeff\*mx)
  
  #计算关联度#
  # 暂时简单处理, 等权
  relDegree = rep(NA, nc)
  for (i in 1:nc) {
    relDegree\[i\] = mean(relations\[,i\])  # 等权
  }
  
  
  #排序: 按关联度大到小#
  X_order = X\[order(relDegree, 
  relDes = rep(NA, nc) #分配空间  关联关系描述(说明谁和谁的关联度)
  X\_names = names(X\_o
  names(relationalDegree) = relDes
  
  
  if (cluster) {
    
    greyRelDegree = GRA(economyC
    
      
    # 得到差异率矩阵 #
    grey_diff = matrix(0
        
        grey_diff\[i,j\] = abs(rel
    #得到距离矩阵#
    grey_dist = matrix(0, nrow
iff\[i,j\]+grey_diff\[j,i\]
      }
    }
    
    # 得到灰色相关系数矩阵 #
    grey\_dist\_max = max(grey_dist)
    grey_correl = matrix(0, nrow = nc, ncol = nc)
    for (i in 1:nc) {
      for (j in 1:nc) {
        grey\_correl\[i,j\] = 1 - grey\_dist\[i,j\] / grey\_dist\_max
      }
    }
    
    
    d = as.dist(1-grey_correl)  # 得到无对角线的下三角矩阵(数值意义反向了, 值越小表示越相关 )
    # 主对角线其实表示了各个对象的相近程度, 画图的时候, 相近的对象放在一起
    
    hc = hclust(d, method = clusterMethod)  # 系统聚类(分层聚类)函数, single: 单一连接(最短距离法/最近邻) 
    # hc$height, 是上面矩阵的对角元素升序
    # hc$order, 层次树图上横轴个体序号
    plot(hc,hang=-1)  #hang: 设置标签悬挂位置
    
  }
  
  #输出#
  
  if (cluster)  {
    lst = list(relationalDegree=relationalDegree,
  
  return(lst)
  
}
## 生成数据
rownames(economyCompare) = c("indGV", "indVA", "profit", "incomeTax")
## 灰色关联度
greyRelDegree = greya(economyCompare)
greyRelDegree

灰色关联度

灰色聚类,如层次聚类

## 灰色聚类
greya(economyCompare, cluster = T)

相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
16天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
39 3
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
67 3
|
6月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
下一篇
无影云桌面