R语言极值理论 EVT、POT超阈值、GARCH 模型分析股票指数VaR、条件CVaR:多元化投资组合预测风险测度分析

简介: R语言极值理论 EVT、POT超阈值、GARCH 模型分析股票指数VaR、条件CVaR:多元化投资组合预测风险测度分析

概要

本文用 R 编程语言极值理论 (EVT) 以确定 10 只股票指数的风险价值(和条件 VaR)。使用 Anderson-Darling 检验对 10 只股票的组合数据进行正态性检验,并使用 Block Maxima 和 Peak-Over-Threshold 的 EVT 方法估计 VaR/CvaR。最后,使用条件异向性 (GARCH) 处理的广义自回归来预测未来 20 天后指数的未来值。本文将确定计算风险因素的不同方法对模型结果的影响。

极值理论(最初由Fisher、Tippett和Gnedenko提出)表明,独立同分布(iid)变量样本的分块最大值的分布会收敛到三个极值分布之一。

最近,统计学家对极端值建模的兴趣又有了新的变化。极限值分析已被证明在各种风险因素的案例中很有用。在1999年至2008年的金融市场动荡之后,极值分析获得了有效性,与之前的风险价值分析不同。极限值代表一个系统的极端波动。极限值分析提供了对极端事件的概率、规模和保护成本的关系进行建模的能力。

参考

https://arxiv.org/pdf/1310.3222.pdf

https://www.ma.utexas.edu/mp_arc/c/11/11-33.pdf

http://evt2013.weebly.com/uploads/1/2/6/9/12699923/penalva.pdf

Risk Measurement in Commodities Markets Using Conditional Extreme Value Theory

第 1a 节 - 工作目录、所需的包和会话信息

为了开始分析,工作目录被设置为包含股票行情的文件夹。然后,安装所需的 R 编程语言包并包含在包库中。R 包包括极值理论函数、VaR 函数、时间序列分析、定量交易分析、回归分析、绘图和 html 格式的包。

library(ggplot2)
library(tseries)
library(vars)
library(evd)
library(POT)
library(rugarch)

第 1b 节 - 格式化专有数据

用于此分析的第一个文件是“Data_CSV.csv”。该文件包含在 DAX 证券交易所上市的 15 家公司的股票代码数据,以及 DAX 交易所的市场投资组合数据。从这个数据文件中选出了 10 家公司,这些公司最近十年的股价信息是从谷歌财经下载的。

第 1c 节 - 下载股票代码数据

股票价格数据下载并读入 R 编程环境。收益率是用“开盘价/收盘价 ”计算的,十家公司的数据合并在一个数据框中,(每家公司一列)。

结果数据帧的每一行代表记录股价的 10 年中的一个工作日。然后计算数据帧中每一行的均值。一列 10 年的日期被附加到数据框。还创建了仅包含行均值和日期信息的第二个数据框。

alDat <- cbind(retursDaa, returnDta_A,
                 retrnsata_Ss, reunsataDB,
                 retunsDta\_H, reurnsDta\_S, rtunsDaaA,
                 retrnsaa_senus,reursDtaAlnz,
                 reurnsData_ailer)

第 2a 节 - 探索性数据分析

创建一个数据框统计表,其中包含每列(或公司)的最小值、中值、平均值、最大值、标准偏差、1% 分位数、5% 分位数、95% 分位数、99% 分位数。分位数百分比适用于极值。还创建了所有收益率均值的时间序列图表。

taeSs<- c(min(x), medan(x), man(x),
                    max(x), sd(x), quntile(x, .01),
                    quanile(x, .05), qunile(x, .95),
                    quatile(x, .99), lngth(x))

第 2b 节 - 10 只股票指数的 VaR 估计

all_va.2 <- VAR(lDvarts, p = 2, tpe= "cnst")
# 预测未来125天、250天和500天
aDFva100 <- pdc(alDva.c, n.aea = 100, ci = 0.9)

为了开始估算数据所隐含的未来事件,我们进行了初步的风险值估算。首先,所有行的平均值和日期信息的数据框架被转换为时间序列格式,然后从这个时间序列中计算出风险值。根据VaR计算对未来100天和500天的价值进行预测。在随后的预测图中,蓝色圆圈代表未来100天的数值,红色圆圈代表500天的回报值。

plot(ap0$t$Tme\[1:1200\],
     alF_ar.d.$fst\[1:1200\])

第 2c 节 - 估计期望_shortfall_(ES),条件VAR_(_CvaR_)_ 10 股票指数

为便于比较,计算了10只股票指数数据的条件风险值(CvaR或估计亏损)。首先,利用数据的时间序列,找到最差的0.95%的跌幅的最大值。然后,通过 "高斯 "方法计算出估计亏损,这两种计算的结果都以表格形式呈现。

ES(s(lD1:2528, 2, rp=FAE\]),p=0.95, mho="gausn")

第 2d 节 - 10 只股票指数的希尔Hill估计

由于假设10股指数数据为重尾分布,数据极少变化,所以采用Hill Estimation对尾指数进行参数估计。目的是验证 10 只股票数据是否为极值分布。Hill Estimation 生成的图证实了。

hil(orvtis, otio="x", trt=15, nd=45)


点击标题查阅往期内容


R语言POT超阈值模型和极值理论EVT分析



左右滑动查看更多


01

02

03

04



第 2e 节 - 正态分布的 Anderson-Darling 检验

Anderson-Darling 检验主要用于分布族,是分布非正态性的决定因素。在样本量较大的情况下(如在 10 股指数中),小于 0.05 的 P 值表明分布与正态性不同。这是极值分布的预期。使用 Anderson-Darling 检验发现的概率值为 3.7^-24,因此证实了非正态性。

第 2f 节 - 结果表

最后,给出了10个股票指数未来价值的估计结果表。3 个 VaR 估计值(和估计差额)的点估计值和范围被制成表格以比较。

VaRES\[3,\] <- c("ES", etFbl\[1\], 4)
                        eSFbe\[2\], estFtbl\[3\],
                        rond(eSab\[4\], 4))

第 3a 节 - 10 个股票指数的 EVT 分块最大值估计

极值理论中的 Block Maxima 方法是 EVT 分析的最基本方法。Block Maxima 包括将观察期划分为相同大小的不重叠的时期,并将注意力限制在每个时期的最大观察值上。创建的观察遵循吸引条件的域,近似于极值分布。然后将极值分布的参数统计方法应用于这些观察。

极值理论家开发了广义极值分布。GEV 包含一系列连续概率分布,即 Gumbel、Frechet 和 Weibull 分布(也称为 I、II 和 III 型极值分布)。

在以下 EVT Block Maxima 分析中,10 股指数数据拟合 GEV。绘制得到的分布。创建时间序列图以定位时间轴上的极端事件,从 2006 年到 2016 年。然后创建四个按 Block Maxima 数据顺序排列的图。最后,根据 gev() 函数创建 Block Maxima 分析参数表。

gev(ltMeans, x=0.8, m=0)
plt(alVF)

第 3b 节 - 分块最大值的 VaR 预测

为了从 Block Maxima 数据中创建风险价值 (VaR) 估计,将 10 股指数 GEV 数据转换为时间序列。VaR 估计是根据 GEV 时间序列数据进行的。未来值的预测(未来 100 天和 500 天)是从 VaR 数据推断出来的。在结果图中,蓝色圆圈表示未来 100 天的值,红色圆圈表示 500 天的收益率值。

# 预测未来500天
aGE500<- preit(aG_va.c, n.ad = 500, ci = 0.9)
plot(aGE500pd.500)

第 3c 节 - 分块最大值的期望损失ES (CvaR)

10只股票指数GEV数据的条件风险值("CvaR "或 "期望损失")被计算。首先,利用数据的时间序列,找到最差的0.95%的缩水的最大值。然后,通过极端分布的 "修正 "方法来计算 "估计亏损",这两种计算的结果都以表格形式呈现。

# 条件缩减是最差的0.95%缩减的平均值
ddGV <- xdrow(aEVts,2
,2)
# CvaR(预期亏损)估计值
CvaR(ts(alE), p=0.95, meho="miie")

第 3d 节 - 分块极大值的 Hill 估计

希尔估计(用于尾部指数的参数估计)验证 10 只股票的 GEV 数据是极值分布。

第 3e 节 - 正态分布的 Anderson-Darling 检验

Anderson-Darling 检验是确定大样本数量分布的非正态性的有力决定因素。如果 P 值小于 0.05,则分布与正态性不同。通过该测试发现了一个微小的概率值 3.7^-24。

第 3f 节 - 结果表

最后,给出了对 10 股指数 GEV 未来价值的估计结果表。3 个 GEV VaR 估计值(和 GEV 期望损失)的点估计值和范围制成表格比较。

G_t3,
3, <- c("GEV ES",sFale1
1,
                     sStble2
2, SEble3
3,
                     "NA")
GRst

第 3g 节 - 分块极大值的 100 天 GARCH 预测

通过将 Block Maxima GEV 分布(10 只股票的指数)拟合到 GARCH(1,1)(广义自回归条件异型)模型,对 Block Maxima EVT 数据进行预测。显示预测公式参数表。创建一个“自相关函数”(ACF) 图,显示随时间变化的重要事件。然后,显示拟合模型结果的一组图。创建对未来 20 天(股票指数表现)的预测。最后,20 天的预测显示在 2 个图中。

spec(aanc.ol = list(mel = 'eGARCH',
                                        garer= c(1, 1)),
                  dirion = 'sd')
# 用广义自回归条件异质性拟合模型
alimol = ugct(pec,allV, sovr = 'ybi')
cofale <- dtafe(cof(litol))
oeBal
plt(l.itodl)

第 4a 节 - 峰值超过阈值估计 - 10 个股票指数

在 EVT 中的峰值超过阈值方法中,选择超过某个高阈值的初始观测值。这些选定观测值的概率分布近似为广义帕累托分布。通过拟合广义帕累托分布来创建最大似然估计 (mle)。MLE 统计数据以表格形式呈现。然后通过 MLE 绘图以图形方式诊断所得估计值。

plot(Dseans, u.rg=c(0.3, 0.35))

第 4b 节 - POT 的 VaR 预测

POT 数据的风险价值 (VaR) 估计是通过将 10 个股票指数 MLE 数据转换为时间序列来创建的。VaR 估计是根据 MLE 时间序列数据进行的。未来值的预测(未来 100 天和 500 天)是从 MLE VaR 数据推断出来的。在结果图中,蓝色圆圈表示未来 100 天的值,红色圆圈表示 500 天的收益值。

VAR(merts, p = 2, tp = "cost")
# 预测未来125天、250天和500天
mle_r.pd <- prect(e.ar, n.ahad = 100, ci = 0.9)
plot(mea.prd)

第 4c 节 - POT 的期望损失ES (CvaR) 预测

然后计算10只股票指数MLE数据的条件风险值("CvaR "或 "期望损失ES")。数据的时间序列被用来寻找最差的0.95%的跌幅的最大值。通过极端分布的 "修正 "方法,计算出 "期望损失ES",两种计算的结果都以表格形式呈现。

# 最差的0.95%最大回撤的平均值
mdM <- maxdadw(mlvs,2
,2)
CvaR(ldaa), p=0.95, meto="mdii",
               pimeod = "comnen", weghts)

第 4d 节 - 峰值超过阈值的 Hill 估计

Hill 估计(用于尾部指数的参数估计)验证 10 只股票的 MLE 数据是一个极值分布。

第 4e 节 - 正态分布的 Anderson-Darling 检验

Anderson-Darling 检验是确定大样本数量分布的非正态性的有力决定因素。如果 P 值小于 0.05,则分布与正态性不同。此测试的结果 P 值为 3.7^-24。

第 4f 节 - 结果表

最后,给出了 10 个股票指数 MLE 未来价值的估计结果表。3 个 MLE VaR 估计值(和 MLE 期望损失ES)的点估计值和范围被制成表格来比较。

第 4g 节 - 峰值超过阈值的 100 天 GARCH 预测

通过将 MLE(10 只股票指数的最大似然估计)拟合到 GARCH(1,1)(广义自回归条件异型性)模型,对峰值超过阈值 EVT 数据进行预测。显示预测公式参数表。创建了一个“自相关函数”(ACF)图,显示了随时间变化的重要事件。然后,显示拟合模型结果的一组图。然后创建对接下来 20 天(股票指数表现)的预测。最后,20 天的预测(来自峰值超过阈值 EVT extimation)显示在 2 个图中。

fit(ec,ta, slvr = 'hybrid')
plot(pot.fite.ol)

第 5a 节 - 估计方法影响表

下表汇总了检验 极值分布的 10 个股票的四种方法的结果。第一列包含四种估计方法的名称。提供了 VaR、ES、mu统计量和 Anderson-Darling P 值的统计量。

c("VaR",
                     round(mean(cofets),4),
                     "NA", "NA", p.vau)
c("Block Maxm", round(mean(coffies),4),
                     MES, pr.ss\[3\],.vle)
c("POT", 
                     round(mean(cofies), 4),
                     MES, fitdaes, p.ale)

第 5b 节 - 结论

在对10家公司(在证券交易所上市)10年的股票收益率进行检查后,证实了将收益率变化定性为极值分布的有效性。对四种分析方法的拟合值进行的所有安德森-达林测试显示,分布具有正态性或所有非极值的概率不大。这些方法在收益数据的风险值方面是一致的。分块最大值方法产生了一个风险值估计的偏差。传统的VaR估计和POT估计产生相同的风险值。相对于传统的股票收益率数据的CvaR估计,两种EVT方法预测的期望损失较低。标准Q-Q图表明,在10只股票的指数中,Peaks-Over-Threshold是最可靠的估计方法。


相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
8天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
27 3
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
67 3
|
6月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)