R语言分析糖尿病数据:多元线性模型、MANOVA、决策树、典型判别分析、HE图、Box's M检验可视化

简介: R语言分析糖尿病数据:多元线性模型、MANOVA、决策树、典型判别分析、HE图、Box's M检验可视化

全文链接:https://tecdat.cn/?p=33609


Reaven和Miller(1979)研究了145名非肥胖成年人的葡萄糖耐量和胰岛素血液化学指标之间的关系。他们使用斯坦福线性加速器中心的PRIM9系统将数据可视化为3D,并发现了一个奇特的图案,看起来像是一个有两个翼的大斑点点击文末“阅读原文”获取完整代码数据


背景

本文帮助客户使用这些数据来说明多元线性模型的各种图形方法。

设置

读取数据

str(Diabetes)

image.png

这些变量是:

  • relwt:相对体重,表示实际体重与人的身高相比的期望体重的比率
  • glufast:空腹血浆葡萄糖水平
  • glutest:测试血浆葡萄糖水平,测量葡萄糖不耐受的程度,
  • instest:测试中的血浆胰岛素,测量口服葡萄糖的胰岛素反应,
  • sspg:稳态血浆葡萄糖,测量胰岛素抵抗性
  • group:诊断组

数据的椭圆和方差齐性

我们首先绘制数据集中三个变量的协方差椭圆。

从这个结果中可以清楚地看出,这里存在方差-协方差矩阵的异质性问题。正常组显示了最小的方差,而明显糖尿病组则显示了最大的方差。

covEllipses(Diabetes

image.png

然而,在其他面板中并非如此,在那里化学糖尿病群体与正常人在一个方向上不同,而明显糖尿病群体在另一个方向上有所不同,并且其内部群体相关性与其他群体呈相反的符号。这在单独的散点图中更容易看到,例如以下示例。

image.png

另外,我们注意到可以使用scatter3d``car包中的三维散点图更容易地看到组之间的差异。

scatter3d

image.png

带有50%数据椭圆体的糖尿病数据的三维散点图


点击标题查阅往期内容


数据分享|PYTHON用决策树分类预测糖尿病和可视化实例


01

02

03

04

image.png


Box's M检验

Box's M检验确认协方差矩阵存在显著的异质性。

diab.boxm <- box

image.png

image.png

对数行列式按照我们在协方差椭圆图中看到的数据椭圆体的大小进行排序。

拟合MLM模型

对组间均值差异拟合MANOVA模型。

MANOVA显示group对响应变量集合有高度显著影响。

Anova(diab.mlm)

image.png

在 QQ 图中检查残差

MANOVA 的另一个假设是残差服从多元正态分布。可以通过卡方 QQ 图进行视觉评估。从下图可以看出,数据点与红色的等值线明显不同。有太多具有较大 D2 值的数据点。

qplot(da.ml)

image.png

HE 图

HE 图显示了各均值之间的 H 椭圆以及误差的 E 椭圆。

默认情况下,将绘制前两个响应变量。结果显示出在 Normal 和 Chemical 变量上的均值排序较为明显。

hplot(diab.

image.png

对于 MLM 的方法会给出一个散点图矩阵,其中包含所有响应变量之间的 HE 图。从结果中可以看出,Diabetes 变量的模式与其他变量不同。

pairs(diblm, fill=TRUE, fill.alpha=0.1)

image.png

典型判别分析

典型判别分析将数据有效地投影到响应的线性组合空间,这个空间解释了组间方差相对于组内方差的最大比例。

diab.an

image.png

典型判别图

plot(dib.an, fill=TRUE, fill.alpha=0.1)

通过一个对象的方法,将典型维度上的分数绘制出来,并在每个组上叠加 60% 的数据椭圆。组均值的位置显示了它们在典型维度上的表现。

响应变量与典型维度的关系通过矢量(类似于双标图)显示出来。每个矢量由其与典型维度的相关系数(结构系数)定义。

plot(diab.can, ellipse=TRUE, var.lwd=2)

image.png

在这个图中可以看到:

  • 第一维与glufastglutest高度相关,而且组别按照Normal < Chemical < Overt的顺序排列。
  • 第二维将Diabetic组与其他两个组区分开来。这个维度与检测过程中的血浆胰岛素水平密切相关。这验证了我们在HE矩阵图中对所有响应变量的观察结果。
  • 规范化的得分数据椭圆的相对大小是方差异质性缺乏的另一个视觉指标。

规范化的HE图

使用规范判别分析的HE图可以概括展示出规范判别分析的结果。变量向量与规范结构图中的变量向量相同。plot(dbcn, fill=c(TRU=0.1, var.lwd=2)

image.png

## 矢量比例因子设置为12.06

线性判别分析和二次判别分析

线性判别分析(LDA)与多元方差分析(MANOVA)类似,但重点是分类而不是测试均值之间的差异。此外,LDA允许指定组成员身份的先验概率,以使分类错误率与所关注人群中获得的结果可比较。二次判别分析允许组之间的协方差矩阵存在差异,并给出二次而不是线性的分类边界。

从LDA的角度来看,可视化结果的一个目标是通过LD1和LD2的得分来查看分类的边界。

image.png

递归分区决策树

递归分区是一种创建决策树的方法,旨在对人群的成员进行分类。它使用预测因子的二分间隔将数据递归地分割成子群体。对于糖尿病数据,结果非常简单:当glutest < 420时,将正常组与两个临床组区分开来。对于后者,glufast < 117将个体分类为化学性糖尿病而不是明显性糖尿病。

diabart <- rpart(

image.png

使用rpart.plot包可以绘制分区树的漂亮图形。节点中的数字给出了每个组中分类的比例。

rpart.plot(, box.pal

image.png

这样做效果如何?我们可以查看预测的组成员资格与实际结果之间的表格,并计算错误率。效果还不错!

(class.pred <- table(predicted
# 错误率
1 - sum(diag(class.pred))/sum(class.pred)
## [1] 0.013

image.png

参考资料

Friendly, M. & Sigal, M. (2017) Visualizing Tests of Equality of Covariance Matrices. Submitted for publication.

Reaven, G. M. & Miller, R. G. (1979). An Attempt to Define the Nature of Chemical Diabetes Using a Multidimensional Analysis Diabetologia, 16, 17-24.

相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
数据采集 机器学习/深度学习 数据挖掘
R语言数据清洗:高效处理缺失值与重复数据的策略
【8月更文挑战第29天】处理缺失值和重复数据是数据清洗中的基础而重要的步骤。在R语言中,我们拥有多种工具和方法来有效地应对这些问题。通过识别、删除或插补缺失值,以及删除重复数据,我们可以提高数据集的质量和可靠性,为后续的数据分析和建模工作打下坚实的基础。 需要注意的是,处理缺失值和重复数据时,我们应根据实际情况和数据特性选择合适的方法,并在处理过程中保持谨慎,以避免引入新的偏差或错误。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
5天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
21 3
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。

热门文章

最新文章