R语言Metropolis Hastings采样和贝叶斯泊松回归Poisson模型

简介: R语言Metropolis Hastings采样和贝叶斯泊松回归Poisson模型

在本文中,我想向你展示如何使用R的Metropolis采样从贝叶斯Poisson回归模型中采样。

Metropolis-Hastings算法

Metropolis-Hastings抽样算法是一类马尔科夫链蒙特卡洛(MCMC)方法,其主要思想是生成一个马尔科夫链 使其平稳分布为目标分布。这种算法最常见的应用之一是在贝叶斯统计中从后验密度中取样,这也是本文的目标。

该算法规定对于一个给定的状态Xt,如何生成下一个状态 有一个候选点Y,它是从一个提议分布 ,中生成的,根据决策标准被接受,所以链条在时间t+1时移动到状态Y,即Xt+1=Y或被拒绝,所以链条在时间t+1时保持在状态Xt,即Xt+1=Xt。

Metropolis 采样

在Metropolis算法中,提议分布是对称的,也就是说,提议分布   满足

,所以Metropolis采样器产生马尔科夫链的过程如下。

  1. 选择一个提议分布 . 在选择它之前,了解这个函数中的理想特征。
  2. 从提议分布g中生成X0。
  3. 重复进行,直到链收敛到一个平稳的分布。
  • 生成Y.
  • 从Uniform(0, 1)中生成U。
  • 如果 , 接受Y并设置Xt+1=Y,否则设置Xt+1=Xt。这意味着候选点Y被大概率地接受 .
  • 递增t.

贝叶斯方法

正如我之前提到的,我们要从定义为泊松回归模型的贝叶斯中取样。

对于贝叶斯分析中的参数估计,我们需要找到感兴趣的模型的似然函数,在这种情况下,从泊松回归模型中找到。

现在我们必须为每个参数β0和β1指定一个先验分布。我们将对这两个参数使用无信息的正态分布,β0∼N(0,100)和β1∼N(0,100) 。

最后,我们将后验分布定义为先验分布和似然分布的乘积。

使用Metropolis采样器时,后验分布将是目标分布。

计算方法

这里你将学习如何使用R语言的Metropolis采样器从参数β0和β1的后验分布中采样。

数据

首先,我们从上面介绍的泊松回归模型生成数据。

n <- 1000 #  样本大小

J <- 2 # 参数的数量

X <- runif(n,-2,2) # 生成自变量的值

beta <- runif(J,-2,2) #生成参数的值

y <- rpois(n, lambda = lambda) # 生成因变量的值

似然函数

现在我们定义似然函数。在这种情况下,我们将使用这个函数的对数,这是强烈建议的,以避免在运行算法时出现数字问题。

LikelihoodFunction <- function(param){
        beta0 <- param\[1\]
        beta1 <- param\[2\]
        lambda <- exp(beta1*X + beta0)
        # 对数似然函数
        loglikelihoods <- sum(dpois(y, lambda = lambda, log=T))
        return(loglikelihoods)
}

先验分布

接下来我们定义参数β0和β1的先验分布。与似然函数一样,我们将使用先验分布的对数。

beta0prior <- dnorm(beta0, 0, sqrt(100), log=TRUE)
        beta1prior <- dnorm(beta1, 0, sqrt(100), log=TRUE)
        return(beta0prior + beta1prior) #先验分布的对数

后验分布

由于我们是用对数工作的,我们把后验分布定义为似然函数的对数与先验分布的对数之和。记住,这个函数是我们的目标函数f(.),我们要从中取样。

提议函数

最后,我们定义提议分布g(.|Xt)。由于我们将使用Metropolis采样器,提议分布必须是对称的,并且取决于链的当前状态,因此我们将使用正态分布,其平均值等于当前状态下的参数值。

Metropolis 采样器

最后,我们编写代码,帮助我们执行Metropolis采样器。在这种情况下,由于我们使用的是对数,我们必须将候选点Y被接受的概率定义为。

 

# 创建一个数组来保存链的值
        chain\[1, \] <- startvalue # 定义链的起始值
        for (i in 1:iterations){
                # 从提议函数生成Y
                Y <- ProposalFunction(chain\[i, \])
                # 候选点被接受的概率
                                           PosteriorFunction(chain\[i, \]))
                # 接受或拒绝Y的决策标准 
                if (runif(1) < probability) {
                        chain\[i+1, \] <- Y
                }else{ 
                        chain\[i+1, \] <- chain\[i, \]

由于MCMC链具有很强的自相关,它可能产生的样本在短期内无法代表真实的基础后验分布。那么,为了减少自相关,我们可以只使用链上的每一个n个值来稀释样本。在这种情况下,我们将在算法的每20次迭代中为我们的最终链选择一个值。

startvalue <- c(0, 0) # 定义链条的起始值
#每20次迭代选择最终链的值
for (i in 1:10000){
        if (i == 1){
                cfinal\[i, \] <- chain\[i*20,\]
        } else {
                cfinal\[i, \] <- chain\[i*20,\]
# 删除链上的前5000个值
burnIn <- 5000

在这里,你可以看到ACF图,它给我们提供了任何序列与其滞后值的自相关值。在这种情况下,我们展示了初始MCMC链的ACF图和对两个参数的样本进行稀释后的最终链。从图中我们可以得出结论,所使用的程序实际上能够大大减少自相关。

结果

在这一节中,我们介绍了由Metropolis采样器产生的链以及它对参数β0和β1的分布。参数的真实值由红线表示。

与glm()的比较

现在我们必须将使用Metropolis采样得到的结果与glm()函数进行比较,glm()函数用于拟合广义linera模型。

下表列出了参数的实际值和使用Metropolis采样器得到的估计值的平均值。

##       True value Mean MCMC       glm

## beta0  1.0578047 1.0769213 1.0769789
## beta1  0.8113144 0.8007347 0.8009269

结论

从结果来看,我们可以得出结论,使用Metropolis采样器和glm()函数得到的泊松回归模型的参数β0和β1的估计值非常相似,并且接近于参数的实际值。另外,必须认识到先验分布、建议分布和链的初始值的选择对结果有很大的影响,因此这种选择必须正确进行。


相关文章
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
3月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
4月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
55 3
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
7月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。