R语言有限混合模型(FMM,finite mixture model)EM算法聚类分析间歇泉喷发时间

简介: R语言有限混合模型(FMM,finite mixture model)EM算法聚类分析间歇泉喷发时间

摘要

本文提供了一套用于分析各种有限混合模型的方法。既包括传统的方法,如单变量和多变量正态混合的EM算法,也包括反映有限混合模型的一些最新研究的方法。许多算法都是EM算法或基于类似EM的思想,因此本文包括有限混合模型的EM算法的概述。

1.有限混合模型介绍

人群中的个体往往可以被划分为群。然而,即使我们观察到这些个体的特征,我们也可能没有真正观察到这些成员的群体。这项任务在文献中有时被称为 "无监督聚类",事实上,混合模型一般可以被认为是由被称为 "基于模型的聚类 "的聚类方法的子集组成。

有限混合模型也可用于那些对个体聚类感兴趣的情况之外。首先,有限混合模型给出了整个子群的描述,而不是将个体分配到这些子群中。有时,有限混合模型只是提供了一种充分描述特定分布的手段,例如线性回归模型中存在异常值的残差分布。

无论建模者在采用混合模型时的目标是什么,这些模型的大部分理论都涉及到一个假设,即子群是按照一个特定的参数形式分布的--而这个形式往往是单变量或多变量正态。

最近的研究目标是放宽或修改多变量正态假设,有限混合模型分析的计算技术,其中的成分是回归、多变量数据离散化产生的向量,甚至是完全未指定的分布。

2. 有限混合模型的EM算法

EM算法迭代最大化,而不是观察到的对数似然Lx(θ),算式为

1. E步:计算Q(θ|θ(t))

2. M步骤:设定θ(t+1)=argmaxθ∈Φ Q(θ|θ(t))

对于有限混合模型,E步骤不依赖于F的结构,因为缺失数据部分只与Z有关。

Z是离散的,它们的分布是通过贝叶斯定理给出的。M步骤本身可以分成两部分,与λ有关的最大化,它不依赖于F,与φ有关的最大化,它必须为每个模型专门处理(例如,参数化、半参数化或非参数化)。因此,模型的EM算法有以下共同特点。

11. E步。计算成分包含的 "后验 "概率(以数据和θ(t)为条件)。

对于所有i = 1, . . . ,n和j = 1, . . . 从数值上看,完全按照公式(2)的写法来实现是很危险的,因为在xi离任何一个成分都很远的情况下,所有的φ(t)j 0(xi)值都会导致数值下溢为零,所以可能会出现不确定的形式0/0。因此,许多例程实际上使用的是等价表达式

或其某种变体。

2.  λ的M步骤。设

2.3. 一个EM算法的例子

作为一个例子,我们考虑对图1中描述的间歇泉喷发间隔时间等待数据进行单变量正态混合分析。这种完全参数化的情况对应于第1节中描述的单变量高斯家族的混合分布,其中(1)中的第j个分量密度φj(x)为正态,均值为μj,方差为σ 2 j。

对于参数(µj , σ2 j )的M步,j = 1, . . 这个EM算法对这种单变量混合分布的M步骤是很简单的,例如可以在McLachlan和Peel(2000)中找到。

mixEM(waiting, lambda = .5)

上面的代码将拟合一个二成分的混合分布(因为mu是一个长度为2的向量),其中标准偏差被假定为相等(因为sigma是一个标量而不是一个向量)。

图1:对数似然值的序列,Lx(θ (t))

图2:用参数化EM算法拟合间歇泉等待数据。拟合的高斯成分。

R> plot(wait1, density = TRUE, cex.axis = 1.4, cex.lab = 1.4, cex.main = 1.8,
+ main2 = "Time between Old Faithful eruptions", xlab2 = "Minutes")

两个图:观察到的对数似然值的序列t 7→Lx(θ (t))和数据的直方图,其中有N(ˆµj , σˆ 2 j)的m(这里m=2)个拟合的高斯分量密度,j=1, . . . ,m,叠加在一起。估计θˆ

另外,使用summary也可以得到同样的输出。

summary(wait1)

3. Cutpoint methods切割点方法

传统上,大多数关于有限混合模型的文献都假设方程(1)的密度函数φj(x)来自一个已知的参数族。然而,一些作者最近考虑了这样的问题:除了确保模型中参数的可识别性所需的一些条件外,φj(x)是不指定的。我们使用Elmore等人(2004)的切割点方法。

我们参考Elmore等人从-63开始,一直到63大约以10.5的间隔采用切点。然后从原始数据中创建一个多指标数据集,如下所示。

R> cutpts <- 10.5*(-6:6)
R> mult(data, cuts = cutpts)

一旦创建了多指标数据,我们可以应用EM算法估计多指标参数。最后,计算并绘制出方程的估计分布函数。图3给出了3分量和4分量解决方案的图表;这些图表与Elmore等人(2004)的图1和图2中的相应图表非常相似。

R> plot(data, posterior, lwd = 2,
+ main = "三分量解")

图3(a)

图3(b)

同样可以用summary来总结EM输出。

单变量对称、位置偏移的半参数例子

在φ(-)相对于Lebesgue度量是绝对连续的额外假设下,Bordes等人(2007)提出了一种估计模型参数的随机算法,即(λ, µ, φ)。一个特例

R> plot(wait1, which = 2 )
R> wait2 <-EM(waiting)
R> plot(wait2, lty = 2)

图4(a)

图4(b)

因为半参数版本依赖于核密度估计步骤(8),所以有必要为这个步骤选择一个带宽。默认情况下,使用"Silverman的经验法则"(Silverman 1986)应用于整个数据集。

R> bw.nrd0(wait)

但带宽的选择会产生很大的不同,如图4(b)所示。

> wait2a <- EM(wait, bw = 1)
> plot(wait2a
> plot(wait2b

我们发现,在带宽接近2的情况下,半参数解看起来非常接近图2的正态混合分布解。进一步降低带宽会导致图4(b)中的实线所表现出的 "凹凸不平"。另一方面,在带宽为8的情况下,半参数解效果很差,因为算法试图使每个成分看起来与整个混合分布相似。


最受欢迎的见解

相关文章
|
2月前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
35 0
|
3月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
4月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
4月前
|
存储 机器学习/深度学习 算法
【博士每天一篇文献-算法】Fearnet Brain-inspired model for incremental learning
本文介绍了FearNet,一种受大脑记忆机制启发的神经网络模型,用于解决增量学习中的灾难性遗忘问题。FearNet不存储先前的例子,而是使用由海马体复合体和内侧前额叶皮层启发的双记忆系统,以及一个受基底外侧杏仁核启发的模块来决定使用哪个记忆系统进行回忆,有效减轻了灾难性遗忘,且在多个数据集上取得了优异的性能。
33 6
|
4月前
|
存储 机器学习/深度学习 算法
【博士每天一篇文献-算法】A biologically inspired dual-network memory model for reduction of catastrophic
本文介绍了一种受生物学启发的双网络记忆模型,由海马网络和新皮层网络组成,通过模拟海马CA3区的混沌行为和齿状回区的神经元更替,以及新皮层网络中的伪模式学习,有效减少了神经网络在学习新任务时的灾难性遗忘问题。
32 4
|
4月前
|
机器学习/深度学习 算法 数据挖掘
|
4月前
|
算法
基于EM期望最大化算法的GMM模型参数估计matlab仿真
此程序在MATLAB 2022a中实现了基于EM算法的GMM参数估计,用于分析由多个高斯分布组成的混合数据。程序通过迭代优化各高斯组件的权重、均值与协方差,直至收敛,并输出迭代过程的收敛曲线及最终参数估计结果。GMM假设数据由K个高斯分布混合而成,EM算法通过E步计算样本归属概率,M步更新参数,循环迭代直至收敛。
|
6月前
|
算法 数据挖掘
必知的技术知识:EM最大期望算法
必知的技术知识:EM最大期望算法
26 0
|
7月前
|
算法 项目管理
R语言实现蒙特卡洛模拟算法
R语言实现蒙特卡洛模拟算法