R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险

简介: R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险

本文的目的是完成一个逻辑回归分析。使你对分析步骤和思维过程有一个基本概念。

library(tidyverse)
library(broom)

这些数据来自一项正在进行的对镇居民的心血管研究。其目的是预测一个病人是否有未来10年的冠心病风险。该数据集包括以下内容。

  • 男性:0=女性;1=男性
  • 年龄。
  • 教育。1 = 高中以下;2 = 高中;3 = 大学或职业学校;4 = 大学以上
  • 当前是否吸烟。0=不吸烟;1=吸烟者
  • cigsPerDay: 每天抽的烟数量(估计平均)。
  • BPMeds: 0 = 不服用降压药;1 = 正在服用降压药
  • 中风。0 = 家族史中不存在中风;1 = 家族史中存在中风
  • 高血压。0 =高血压在家族史上不流行;1 =高血压在家族史上流行
  • 糖尿病:0 = 没有;1 = 有
  • totChol: 总胆固醇(mgdL)
  • sysBP: 收缩压(mmHg)
  • diaBP: 舒张压(mmHg)
  • BMI: 体重指数
  • 心率
  • 葡萄糖:总葡萄糖mgdL
  • TenYearCHD: 0 = 患者没有未来10年冠心病的风险; 1 = 患者有未来10年冠心病的风险

加载并准备数据

read_csv("framingham.csv") %>%
  drop_na() %>% #删除具有缺失值的观察值
  ageCent = age - mean(age), 
  totCholCent = totChol - mean(totChol),

拟合逻辑回归模型

glm(TenYearCHD ~ age +  Smoker +  CholCent, 
              data = data, family = binomial)

预测

对于新病人

data_frame(ageCent = (60 - 49.552), 
                 totCholCent = (263 - 236.848),

预测对数几率

predict(risk_m, x0)

预测概率

根据这个概率,你是否认为这个病人在未来10年内有患冠心病的高风险?为什么?

risk

混淆矩阵

risk_m %>%
  group\_by(TenYearCHD, risk\_predict) %>%
  kable(format="markdown")

mutate( predict = if_else(.fitted > threshold, "1: Yes", "0: No"))

有多大比例的观察结果被错误分类?

依靠混淆矩阵来评估模型的准确性有什么缺点?

ROC曲线

ggplot(risk\_m\_aug, 
  oc(n.cuts = 10, labelround = 3) + 
  geom_abline(intercept = 0) +

auc(roc )$AUC

一位医生计划使用你的模型的结果来帮助选择病人参加一个新的心脏病预防计划。她问你哪个阈值最适合为这个项目选择病人。根据ROC曲线,你会向医生推荐哪个阈值?为什么?

假设

为什么我们不绘制原始残差?

ggplot(data = risk aes(x = .fitted, y = .resid)) +
  labs(x = "预测值", y = "原始残差")

分级的残差图

plot(x =  fitted, y =  resid,
                xlab = "预测概率", 
                main = "分级后的残值与预测值的对比",

## # A tibble: 2 x 2
##   currentSmoker mean_resid
##   <fct>              <dbl>
## 1 0              -2.95e-14
## 2 1              -2.42e-14

检查假设:

- 线性?- 随机性?- 独立性?

系数的推断

currentSmoker1的测试统计量是如何计算的?

在统计学上,totalCholCent是否是预测一个人患冠心病高风险的重要因素?

用检验统计量和P值来证明你的答案。

用置信区间说明你的答案。

偏离偏差检验

glm(TenYearCHD ~ ageCent + currentSmoker + totChol, 
              data = heart_data, family = binomial)

anova

AIC

根据偏离偏差检验,你会选择哪个模型?

基于AIC,你会选择哪个模型?

使用step逐步回归选择模型

step(full_model )

kable(format = "markdown" )


最受欢迎的见解

相关文章
|
7月前
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
|
7月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
4月前
|
机器学习/深度学习 资源调度 算法
R语言逻辑回归与分类模型的深度探索与应用
【8月更文挑战第31天】逻辑回归作为一种经典的分类算法,在R语言中通过`glm()`函数可以轻松实现。其简单、高效且易于解释的特点,使得它在处理二分类问题时具有广泛的应用价值。然而,值得注意的是,逻辑回归在处理非线性关系或复杂交互作用时可能表现不佳,此时可能需要考虑其他更复杂的分类模型。
|
4月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
81 3
|
7月前
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
7月前
|
移动开发 数据可视化
广义线性模型beta二项分布的淋巴结疾病风险预测可视化R语言2实例合集|附数据代码
广义线性模型beta二项分布的淋巴结疾病风险预测可视化R语言2实例合集|附数据代码
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
50 3
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。