R语言基于线性回归的资本资产定价模型(CAPM)

简介: R语言基于线性回归的资本资产定价模型(CAPM)

简介

资本资产定价模型(CAPM) 是用于确定是否在一个特定资产的投资是值得的。本质上,问题是:“该资产的回报是否值得投资?” 在本教程中,我们将应用CAPM模型,使用多元回归模型查看特定股票是否值得投资。

CAPM:公式

经济学就是权衡取舍。根据CAPM公式,基本上将股票或任何类型的资产类别与相对无风险的资产(通常是政府债券)进行比较,因为这些资产的违约概率非常低。CAPM公式如下

  • E(Ri)是期望收益率。
  • Rf是无风险资产,通常是政府债券。
  • βi 系数反映了单个证券与整体市场组合的联动性,用来衡量单个证券的风险。
  • E(Rm)-Rf被认为是 风险溢价

我们可以用下图以图形方式表示CAPM模型

证券市场线(SML)上的有效组合或者是单一的无风险资产或行是无风险资产与市场组合的组合。因此,资本市场线不能解释所有的单一证券或者是只有风险证券组合的期望收益率和风险之间的关系。。

我们的目标是使用线性回归找到βi的值。

数据

我们将使用数据来查找每只股票的beta。

kable(head(capm, 11), format = 'html')

1.  ##       dis                  ge                  gm           
    
2.  ##  Min.   :-0.267794   Min.   :-0.234902   Min.   :-0.389313  
    
3.  ##  1st Qu.:-0.043638   1st Qu.:-0.032974   1st Qu.:-0.076167  
    
4.  ##  Median : 0.005858   Median :-0.004716   Median :-0.013017  
    
5.  ##  Mean   : 0.001379   Mean   : 0.001361   Mean   :-0.009081  
    
6.  ##  3rd Qu.: 0.047858   3rd Qu.: 0.040096   3rd Qu.: 0.068138  
    
7.  ##  Max.   : 0.241453   Max.   : 0.192392   Max.   : 0.276619  
    
8.  ##       ibm                 msft                xom           
    
9.  ##  Min.   :-0.226453   Min.   :-0.343529   Min.   :-0.116462  
    
10.  ##  1st Qu.:-0.038707   1st Qu.:-0.056052   1st Qu.:-0.028031  
    
11.  ##  Median : 0.006482   Median : 0.003996   Median : 0.003309  
    
12.  ##  Mean   : 0.008332   Mean   : 0.008557   Mean   : 0.010488  
    
13.  ##  3rd Qu.: 0.051488   3rd Qu.: 0.056916   3rd Qu.: 0.041534  
    
14.  ##  Max.   : 0.353799   Max.   : 0.407781   Max.   : 0.232171  
    
15.  ##       mkt               riskfree       
    
16.  ##  Min.   :-0.184726   Min.   :0.000025  
    
17.  ##  1st Qu.:-0.022966   1st Qu.:0.001376  
    
18.  ##  Median : 0.010952   Median :0.002870  
    
19.  ##  Mean   : 0.002511   Mean   :0.002675  
    
20.  ##  3rd Qu.: 0.037875   3rd Qu.:0.003904  
    
21.  ##  Max.   : 0.083925   Max.   :0.005195

根据我们的数据,我们有六只股票,我们必须决定这些股票是否值得投资。不幸的是,由于我们必须首先将数据转换为公式(1),因此我们不能仅仅拟合回归模型。我们将必须根据已有变量来计算新变量。

我们需要计算每只股票的风险溢价E(Rm)-Rf。

risk.premium <- mkt -riskfree

我们看一下股票(msft)的散点图。

ggplot(aes(y = msft, x = risk.premium)) + geom_point(col='blue') + xlab('风险溢价') +

值得注意的是,风险溢价越高,期望收益就应该越大。否则,投资具有期望低回报的高风险资产并不是明智之举,因为这会导致损失。

拟合模型

现在我们可以开始拟合我们的回归模型。首先,我们必须将数据分为训练集和测试集。

1.  # 我们将需要为所有六只股票创建回归模型。
    
2.  dis.fit <- lm(dis ~ riskfree + risk.premium, data = capm)
    
5.  # 建立表格
    
7.  kable(df, format = 'html') %>%

我们如何解释风险溢价的价值?风险溢价越高,资产的波动性或风险就越大,因此,投资者应获得可证明资产风险合理的回报,以弥补损失。

现在我们已经估计了beta,可以使用公式(1)计算每只股票的期望收益。

1.  # 将预测添加到原始数据集
    
2.  capm$dis.predict <- dis.predict

拟合回归线

1.  ggplot aes(y = dis.predict, x = risk.premium) + 
    
2.    geom_smooth(col='tomato2', method='lm') +

相关文章
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
3月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
4月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
5月前
|
机器学习/深度学习 算法 数据挖掘
R语言在金融分析中扮演重要角色,用于风险管理、资产定价、量化交易、市场预测和投资组合优化。
【7月更文挑战第2天】R语言在金融分析中扮演重要角色,用于风险管理、资产定价、量化交易、市场预测和投资组合优化。其开源、强大的统计功能和丰富的包(如`PerformanceAnalytics`、`quantstrat`、`forecast`)支持从风险评估到策略回测的各种任务。R的灵活性和社区支持使其成为金融专业人士应对复杂问题的首选工具。
266 1
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
53 3
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
7月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
下一篇
DataWorks