R语言线性回归和时间序列分析北京房价影响因素可视化案例

简介: R语言线性回归和时间序列分析北京房价影响因素可视化案例

目的

房价有关的数据可能反映了中国近年来的变化:

  • 人们得到更多的资源(薪水),期望有更好的房子
  • 人口众多
  • 独生子女政策:如何影响房子的几何结构?更多的卧室,更多的空间

我核心的想法是预测房价。然而,我不打算使用任何arima模型;相反,我将使用数据的特性逐年拟合回归。

结构如下:

  • 数据准备:将数值特征转换为分类;缺失值
  • EDA:对于数值特征和分类特征:平均价格与这些特征的表现
  • 建模:
  • 分割训练/测试给定年份的数据:例如,在2000年分割数据;根据这些数据训练回归模型
  • 然后,在2016年之前的所有新年里,预测每套房子的价值。
  • 用于验证的度量将是房屋的平均价格(即每年从测试样本中获得平均价格和预测值)

数据准备

我们对特征有了非常完整的描述:

  • url:获取数据(字符)的url
  • id:id(字符)
  • Lng:和Lat坐标,使用BD09协议。(数字)
  • Cid:社区id(数字)
  • 交易时间:交易时间(字符)
  • DOM:市场活跃日。(数字)
  • 关注者:交易后的人数。(数字)
  • 总价:(数值)
  • 价格:按平方计算的平均价格(数值)
  • 面积:房屋的平方(数字)
  • 起居室数(字符)
  • 客厅数(字符)
  • 厨房:厨房数量(数字)
  • 浴室数量(字符)
  • 房子高度
  • 建筑类型:包括塔楼(1)、平房(2)、板塔组合(3)、板(4)(数值)
  • 施工时间
  • 装修:包括其他(1)、粗(2)、简单(3)、精装(4)(数值)
  • 建筑结构:包括未清(1)、混合(2)、砖和木(3)、砖混凝土(4)、钢(5)和钢-混凝土复合材料(6)(数值)
  • 梯梯比:同层居民数与电梯数量的比例。
  • 电梯有(1)或没有电梯(0)(数值)
  • 五年期:业主拥有不到5年的财产(数字)

数据清理、特征创建

从最初的数据看:

  • 从网址上,我发现它有位置信息,如chengjiao/101084782030。同样,一个简单的regexp进行省特征提取。
  • 另一个大的数据准备工作是转换一些数字特征,比如地铁,地铁站附近的房子编码为1,相反的情况编码为0。
  • 还有很大一部分DOM缺失。我既不能在建模中使用这个特性,也不能删除NA,但它也会减小数据帧的大小。
#从网址中提取省份
  sapply(df$url, function(x) strsplit(x,'/')[[1]][4])

检查缺失

#缺失数据图
 
  ggplot(data = .,aes(x = V2, y = V1)) + geom_tile(aes(fill = value )) +





  • 如上所述,DOM的很大一部分丢失了。我决定先保留这个特性,然后用中间值来填充缺失的值(分布是非常倾斜的)
  • 否则,buildingType和communityAverage(pop.)中只有几个缺少的值,我决定简单地删除这些值。事实上,它们只占了约30行,而整个数据集的数据量为300k+,因此损失不会太大。
  • 下面我简单地删除了我以后不打算使用的特征。
ifelse(is.na(df$DOM),median(df$DOM,na.rm=T),df$DOM)


用于将数字转换为类别的自定义函数

对于某些特征,需要一个函数来处理多个标签,对于其他一些特征(客厅、客厅和浴室),转换非常简单。

df2$livingRoom <- as.numeric(df2$livingRoom)


似乎buildingType具有错误的编码数字值:

buildingType count
0.048 4
0.125 3
0.250 2
0.333 5
0.375 1
0.429 1
0.500 15
0.667 1
1.000 84541
2.000 137
3.000 59715
4.000 172405
NaN 2021

由于错误的编码值和NA的数量很少,因此我将再次丢弃这些行

df2$renovationCondition <- sapply(df2$renovationCondition, ionCondition)
df2$buildingStructure <- sapply(df2$buildingStructure, makeStructure)
df2$elevator <- ifelse(df2$elevator==1,'has_elevator','no_elevator')


缺失值检察

# 缺失数据图
df2 %>% is.na %>% melt %>% 
  ggplot(data = .,aes(x = Var2, y = Var1)) + geom_tile(aes(fill = value)) +
  scale_fill_manual(values = c("grey20","white")) + theme_minimal(14) +


kable(df %>% group_by(constructionTime) %>% summarise(count=n()) %>% arrange(-count) %>% head(5))
constructionTime count
2004 21145
2003 19409
NA 19283
2005 18924
2006 14854

 

df3 <- data.frame(df2 %>% na.omit())


插补后的最终检查

any(is.na(df3))


## [1] FALSE


探索性分析

由于有数字和分类特征,我将使用的EDA技术有:

  • 数值:相关矩阵
  • 分类:箱线图和地图

我们必须关注价格(单位价格/单位价格)以及总价格(百万元)

totalPrice将是回归模型的目标变量。

数值特征

corrplot(cor(
  df3  ,
  tl.col='black')


评论

  • totalPrice与communityAverage有很强的正相关关系,即人口密集区的房价较高
  • totalPrice与客厅、卫浴室数量有一定的正相关关系。
  • 至于面积变量,我们看到它与上述变量也有很强的相关性:这是有道理的,因为如果房子的面积大,可以建造更多的房间(显而易见)。
  • 其他一些有趣的相关性:communityAverage与建筑时间呈负相关,这意味着在人口密集区建房所需的时间更短

分类特征

地图

  • 中国三级(省)地图
  • 我看了看城郊,它位于北京附近,所以我过滤了那个特定省份的地图
ggplot() + 
  geom_polygon(data = shapefile_test,aes(x = long, y = lat, group = group), 
BeijingLoc <- data.frame('Long'=116.4075,'Lat' = 39.904)


建筑结构

makeEDA('buildingStructure' )


砖木结构的房屋是最昂贵的,几乎是其他类型房屋的两倍

建筑类型

makeEDA('buildingType' )


  • 平房是最昂贵的

装修条件




电梯

  • 价格对电梯的依赖性非常小
  • 住宅的分布与这一特征是相对相等的。

地铁

  • 价格对地铁站附近的依赖性非常小。
  • 住宅的分布与这一特征是相对相等的。

是否满_五年_

makeFeatureCatEDA('fiveYearsProperty', length(unique(df3$fiveYearsProperty)))


  • 对于是否拥有不到5年房产来说,价格的依赖性确实很小
  • 就这一特征而言,房子的分布是相对平等的

区域

回归模型

策略

  • 从tradeTime中提取年份和月份
  • 按年度和月份分组,得到房屋的数量和均价
  • 拆分数据集:
  • 对于年[2010-2017]=在这组年上训练并运行回归模型
  • 对于>2017年:逐月对测试样本并预测平均价格

平均价格总览

首先我们需要看看我们想要预测什么

df3$year <- year(df3$tradeTimeTs)
df3$month <- month(df3$tradeTimeTs)


df3 %>% filter(year>2009) %>% group_by(monthlyTrad) %>% 
  summarise(count=n(), mean = mean(price)) %>% 
  ggplot(aes(x=monthlyTradeTS, y= mean)) +


  • 平均价格上涨至2017年中期,然后迅速下降
  • 同时,房屋数量随着价格的上涨而增加,而且现在房屋交易的数量也随着价格的上涨而减少。

准备训练/测试样本

我在2017-01-01拆分数据。对于所有样本,我需要把分类特征变成伪变量。

df_train <- data.frame(df  %>% filter(year>2009 & year<2017))
df_test <- data.frame(df %>% filter(year>=2017))
as.data.frame(cbind(
  df_train %>% select_if(is.numeric) %>% select(-Lng, -Lat, -year, -month),
  'bldgType'= dummy.code(df_train$buildingType),
  'bldgStruc'= dummy.code(df_train$buildingStructure),
  'renovation'= dummy.code(df_train$renovationCondition),
  'hasElevator'= dummy.code(df_train$elevator),


在这一步中,我只训练一个线性模型

regressors<-c('lm')
 
 Control <- trainControl(method = "cv",number = 5, repeats=3)
for(r in regressors){
    cnt<-cnt+1
     res[[cnt]]<-train(totalPrice ~., data = train ,method=r,trControl =  Control)


r^2在0.88左右,不错。让我们看看细节。

训练精度

g1<-ggplot(data=PRED,aes(x=Prediction,y=True)) + geom_jitter() + geom_smooth(method='lm',size=.5) +
    #计算指标
    mse <- mean((PRED$True-PRED$Prediction)^2)
    rmse<-mse^0.5
    SSE = sum((PRED$Pred - PR


## [1] "MSE: 15952.845934 RMSE : 126.304576 R2 :0.795874"


  • 所以看起来残差还不错(分布是正态的,以0为中心),但对于低价格来说似乎失败了。

训练和测试样本的预测与时间的关系

  • 基本上与上述相同,但我将重复预测所有月份的训练数据
  • 我的目标指标是平均房价。
  • 训练是在10多年的训练样本中完成的,因此逐月查看预测将非常有趣。
# 训练样本->训练精度
 
for (i in 1:length(dates_train)){
     current_df <- prepareDF(current_df)
     current_pred <- mean(predict(res[[1]],current_df))
 
#运行测试样本-->测试精度
 
for (i in 1:length(dates_test)){
     current_df <- prepareDF(current_df)
    current_pred <- mean(predict(res[[1]],current_df))


RES %>% reshape2::melt(id=c('date','split')) %>% 
  ggplot(aes(x=date,y=value)) + geom_line(aes(color=variable, lty=split),size=1) +


  • 预测对于2012年之后的数据确实非常好,这可能与有足够数据的月份相对应

改进

地理位置作为特征

  • 下面是一个有趣的图;它显示了每个位置的总价格。在二维分布的中心,价格更高。
  • 这个想法是计算每个房子到中心的距离,并关联一个等级/分数
BeijingLoc <- data.frame('Long'=116.4075,'Lat' = 39.904)
df3 %>% ggplot(aes(x=Lng,y=Lat)) + geom_point(aes(color=price),size=.1,alpha=.5)  + 
  theme(legend.position = 'bottom') +



相关文章
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
3月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
66 3
|
4月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
8月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
8月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
5月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
5月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
5月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
98 3
|
8月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)