R语言分位数回归预测筛选有上升潜力的股票

简介: R语言分位数回归预测筛选有上升潜力的股票

现在,分位数回归已被确立为重要的计量经济学工具。与均值回归(OLS)不同,目标不是给定x的均值,而是给定x的一些分位数。您可以使用它来查找具有良好上升潜力的股票。您可能会认为这与股票的beta有关,但是beta与OLS相关,并且是对称的。如果市场出现上涨,高beta股票将获得上行波动的收益,但对称地,当市场下跌时,您可能会遭受巨额亏损。

使用下图最好地理解分位数回归的用法:

绘制的是股票收益。蓝线是OLS拟合值,红线是分位数(80%和20%)拟合值。

在上部面板中,您可以看到,当市场上涨时(X轴上的正值很高),Y轴上的分散很大。当市场下跌时,相对的分散程度而言较大。在底部面板中,情况相反。当市场上涨时,您“非常了解”股票会发生什么,但是当市场处于下跌时,股票收益的不确定性就会降低。考虑到其他因素,您希望投资组合中包含高位股票。当市场上涨时,它们收益很好,但同时在下跌的过程中提供相对的确定性。

以下代码读取股票行情,并找到最佳比率,即:上行时分散度高,而下行时分散度低:




dat0 = getSymbols(sy[1], src="yahoo", from=start, to=end,auto.assign = F, warnings = FALSE,symbol.lookup = F)
#查询最近365天:dat <- gtint(sym = c(tickers,"SPY"),365)# 将样品划分成两部分

ins <- n/2# 在0.2和0.8之间查找斜率

Tau = c(.2,.8)
for (j in 1:(l-1)for (i in 1:length(Tau)qslope[i,j] = rq(dat$ret[2:ins,j~dat$ret[2:ins,l, tau = Tau[i])$coef[2]

# 确定哪些股票有用:


dat$ret <- dat$ret[,rat0<2 & rat0>(-2)]
## 画图
plot(dat$ret[1:ins,which.max(rat)]~dat$ret[1:ins,l]
plot(dat$ret[1:n,which.min(rat)]~dat$ret[1:n,l],title(nam)

我们使用样本的前半部分来选择我们要使用的股票。假设我们以最差的比率做空股票,并以最佳的比率做多股票。



dat$p <- dat$p[,rat0<2 & rat0>(-2)]plot(dat$p[1:ins,l]/dat$p[1,l], ty = "l", ylim = c(.8,1.5),
plot(dat$p[ins:n,l]/dat$p[ins,l], ty = "l", ylim = c(.8,1.5), xlab = "样本外时期",)

从结果可以看到模型有较好的表现。


相关文章
|
7月前
|
算法 数据挖掘
【视频】量化交易陷阱和R语言改进股票配对交易策略分析中国股市投资组合
【视频】量化交易陷阱和R语言改进股票配对交易策略分析中国股市投资组合
|
7月前
|
数据处理
R语言GARCH族模型:正态分布、t、GED分布EGARCH、TGARCH的VaR分析股票指数
R语言GARCH族模型:正态分布、t、GED分布EGARCH、TGARCH的VaR分析股票指数
|
7月前
|
vr&ar Python
R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据
R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据
|
7月前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言逻辑回归logistic对ST股票风险建模分类分析混淆矩阵、ROC曲线可视化
R语言逻辑回归logistic对ST股票风险建模分类分析混淆矩阵、ROC曲线可视化
|
7月前
|
数据可视化
基于R语言股票市场收益的统计可视化分析
基于R语言股票市场收益的统计可视化分析
|
7月前
|
数据可视化 测试技术
R语言几何布朗运动GBM模拟股票价格优化建立期权定价用概率加权收益曲线可视化
R语言几何布朗运动GBM模拟股票价格优化建立期权定价用概率加权收益曲线可视化
|
7月前
R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析(下)
R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析
|
7月前
|
索引
R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析(中)
R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析
|
7月前
|
存储
R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析(上)
R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析
|
7月前
|
数据库
R语言分析ROE与股票收益的关系
R语言分析ROE与股票收益的关系
下一篇
DataWorks