R语言复杂网络分析:聚类(社区检测)和可视化

简介: R语言复杂网络分析:聚类(社区检测)和可视化

 

为了用R来处理网络数据,我们使用婚礼数据集。




> nflo=network(flo,directed=FALSE)> plot(nflo, displaylabels = TRUE,+ boxed.labels =+ FALSE)

 

下一步是igraph。由于我们有邻接矩阵,因此可以使用它




graph_from_adjacency_matrix(flo,+ mode = "undirected")

 

我们可以在两个特定节点之间获得最短路径。我们给节点赋予适当的颜色



all_shortest_paths(iflo,)

> plot(iflo)

 

我们还可以可视化边,需要从输出中提取边缘



> lins=c(paste(as.character(L)[1:4],+ "--"+ as.character(L)[2:5]  sep="" ,+ paste(as.character(L) 2:5],+ "--",
> E(ifl )$color=c("grey","black")[1+EU]> plot(iflo)

 

也可以使用D3js可视化



> library( networkD3 )> simpleNetwork (df)

下一个问题是向网络添加一个顶点。最简单的方法是通过邻接矩阵实现概率



> flo2["f","v"]=1> flo2["v","f"]=1

 

然后,我们进行集中度测量。

 

目的是了解它们之间的关系。


betweenness(ilo)
> cor(base)betw close deg eigbetw 1.0000000 0.5763487 0.8333763 0.6737162close 0.5763487 1.0000000 0.7572778 0.7989789deg 0.8333763 0.7572778 1.0000000 0.9404647eig 0.6737162 0.7989789 0.9404647 1.0000000

可以使用层次聚类图来可视化集中度度量



hclust(dist( ase  ,+ method="ward")

 

查看集中度度量的值,查看排名




> for(i in 1:4) rbase[,i]=rank(base[,i])

 

在此,特征向量测度非常接近顶点的度数。

最后,寻找聚类(以防这些家庭之间爆发战争)


> kc <- fastgreedy.community ( iflo )

在这里,我们有3类

 

 


最受欢迎的见解

相关文章
|
1月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
63 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
1月前
|
机器学习/深度学习 数据可视化 Windows
深度学习笔记(七):如何用Mxnet来将神经网络可视化
这篇文章介绍了如何使用Mxnet框架来实现神经网络的可视化,包括环境依赖的安装、具体的代码实现以及运行结果的展示。
54 0
|
27天前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
48 7
|
1月前
|
机器学习/深度学习 数据可视化 Linux
Seaborn可视化学习笔记(一):可视化神经网络权重分布情况
这篇文章是关于如何使用Seaborn库来可视化神经网络权重分布的教程,包括函数信息、测试代码和实际应用示例。
43 0
|
3月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
57 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
3月前
|
Prometheus 监控 Cloud Native
在Linux中,如何使用Grafana和Prometheus进行网络监控和可视化?
在Linux中,如何使用Grafana和Prometheus进行网络监控和可视化?
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
29天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
44 3
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
下一篇
无影云桌面