yolo-world 源码解析(五)(3)

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: yolo-world 源码解析(五)

yolo-world 源码解析(五)(2)https://developer.aliyun.com/article/1483890

.\YOLO-World\yolo_world\models\data_preprocessors\__init__.py

# 版权声明,版权归腾讯公司所有
# 导入 YOLOWDetDataPreprocessor 类
from .data_preprocessor import YOLOWDetDataPreprocessor
# 导出 YOLOWDetDataPreprocessor 类,供外部使用
__all__ = ['YOLOWDetDataPreprocessor']

.\YOLO-World\yolo_world\models\dense_heads\yolo_world_head.py

# 导入所需的库和模块
import math
import copy
from typing import List, Optional, Tuple, Union, Sequence
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from mmcv.cnn import ConvModule
from mmengine.config import ConfigDict
from mmengine.model import BaseModule
from torch import Tensor
from mmengine.dist import get_dist_info
from mmengine.structures import InstanceData
from mmdet.structures import SampleList
from mmdet.utils import OptConfigType, InstanceList, OptInstanceList
from mmdet.models.utils import (
    multi_apply,
    unpack_gt_instances,
    filter_scores_and_topk)
from mmyolo.registry import MODELS
from mmyolo.models.dense_heads import YOLOv8HeadModule, YOLOv8Head
from mmyolo.models.utils import gt_instances_preprocess
from mmcv.cnn.bricks import build_norm_layer
# 注册模型类为MODELS
@MODELS.register_module()
class ContrastiveHead(BaseModule):
    """Contrastive Head for YOLO-World
    compute the region-text scores according to the
    similarity between image and text features
    Args:
        embed_dims (int): embed dim of text and image features
    """
    def __init__(self,
                 embed_dims: int,
                 init_cfg: OptConfigType = None) -> None:
        super().__init__(init_cfg=init_cfg)
        # 初始化偏置参数
        self.bias = nn.Parameter(torch.zeros([]))
        # 初始化logit_scale参数
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
    def forward(self, x: Tensor, w: Tensor) -> Tensor:
        """Forward function of contrastive learning."""
        # 对输入x进行L2范数归一化
        x = F.normalize(x, dim=1, p=2)
        # 对输入w进行L2范数归一化
        w = F.normalize(w, dim=-1, p=2)
        # 使用torch.einsum计算张量乘积
        x = torch.einsum('bchw,bkc->bkhw', x, w)
        # 对结果乘以logit_scale的指数并加上偏置
        x = x * self.logit_scale.exp() + self.bias
        return x
@MODELS.register_module()
class BNContrastiveHead(BaseModule):
    """ Batch Norm Contrastive Head for YOLO-World
    using batch norm instead of l2-normalization
    Args:
        embed_dims (int): embed dim of text and image features
        norm_cfg (dict): normalization params
    """
    # 定义一个名为ContrastiveHead的类,继承自nn.Module类
    def __init__(self,
                 embed_dims: int,
                 norm_cfg: ConfigDict,
                 init_cfg: OptConfigType = None) -> None:
        # 调用父类的初始化方法
        super().__init__(init_cfg=init_cfg)
        # 根据norm_cfg中的参数构建规范化层
        self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
        # 初始化偏置参数为0
        self.bias = nn.Parameter(torch.zeros([]))
        # 初始化logit_scale参数为-1.0,用于稳定性
        self.logit_scale = nn.Parameter(-1.0 * torch.ones([]))
    # 定义前向传播函数
    def forward(self, x: Tensor, w: Tensor) -> Tensor:
        """Forward function of contrastive learning."""
        # 对输入x进行规范化
        x = self.norm(x)
        # 对输入w进行L2范数规范化
        w = F.normalize(w, dim=-1, p=2)
        # 使用torch.einsum进行张量乘法操作
        x = torch.einsum('bchw,bkc->bkhw', x, w)
        # 对结果乘以logit_scale的指数,并加上偏置
        x = x * self.logit_scale.exp() + self.bias
        # 返回结果
        return x
# 注册 YOLO-World 的头部模块到模型注册表中
@MODELS.register_module()
class YOLOWorldHeadModule(YOLOv8HeadModule):
    """Head Module for YOLO-World
    Args:
        embed_dims (int): embed dim for text feautures and image features
        use_bn_head (bool): use batch normalization head
    """
    def __init__(self,
                 *args,
                 embed_dims: int,
                 use_bn_head: bool = False,
                 **kwargs) -> None:
        # 初始化头部模块的属性
        self.embed_dims = embed_dims
        self.use_bn_head = use_bn_head
        # 调用父类的初始化方法
        super().__init__(*args, **kwargs)
    def init_weights(self, prior_prob=0.01):
        """Initialize the weight and bias of PPYOLOE head."""
        # 调用父类的初始化权重方法
        super().init_weights()
        # 针对每个类别预测器和类别对比器进行初始化
        for cls_pred, cls_contrast, stride in zip(self.cls_preds,
                                                  self.cls_contrasts,
                                                  self.featmap_strides):
            cls_pred[-1].bias.data[:] = 0.0  # 重置偏置
            # 如果类别对比器有偏置属性
            if hasattr(cls_contrast, 'bias'):
                # 使用常数初始化类别对比器的偏置
                nn.init.constant_(
                    cls_contrast.bias.data,
                    math.log(5 / self.num_classes / (640 / stride)**2))
    def forward(self, img_feats: Tuple[Tensor],
                txt_feats: Tensor) -> Tuple[List]:
        """Forward features from the upstream network."""
        # 确保图像特征的数量等于级别数量
        assert len(img_feats) == self.num_levels
        # 将文本特征复制到每个级别的文本特征列表中
        txt_feats = [txt_feats for _ in range(self.num_levels)]
        # 调用 multi_apply 方法进行前向传播
        return multi_apply(self.forward_single, img_feats, txt_feats,
                           self.cls_preds, self.reg_preds, self.cls_contrasts)
    def forward_single(self, img_feat: Tensor, txt_feat: Tensor,
                       cls_pred: nn.ModuleList, reg_pred: nn.ModuleList,
                       cls_contrast: nn.ModuleList) -> Tuple:
        """Forward feature of a single scale level."""
        # 获取输入特征的形状信息
        b, _, h, w = img_feat.shape
        # 使用分类预测模型对图像特征进行预测
        cls_embed = cls_pred(img_feat)
        # 使用对比损失模型对分类嵌入进行预测
        cls_logit = cls_contrast(cls_embed, txt_feat)
        # 使用回归预测模型对图像特征进行预测
        bbox_dist_preds = reg_pred(img_feat)
        # 如果回归最大值大于1
        if self.reg_max > 1:
            # 重新调整bbox_dist_preds的形状
            bbox_dist_preds = bbox_dist_preds.reshape(
                [-1, 4, self.reg_max, h * w]).permute(0, 3, 1, 2)
            # TODO: get_flops脚本无法处理矩阵乘法的情况,稍后需要修复
            # 计算bbox_preds,softmax后与proj矩阵相乘
            bbox_preds = bbox_dist_preds.softmax(3).matmul(
                self.proj.view([-1, 1])).squeeze(-1)
            # 调整bbox_preds的形状
            bbox_preds = bbox_preds.transpose(1, 2).reshape(b, -1, h, w)
        else:
            bbox_preds = bbox_dist_preds
        # 如果是训练模式,返回分类预测、bbox预测和bbox距离预测
        if self.training:
            return cls_logit, bbox_preds, bbox_dist_preds
        # 如果是推理模式,返回分类预测和bbox预测
        else:
            return cls_logit, bbox_preds
@MODELS.register_module()
class YOLOWorldHead(YOLOv8Head):
    """注册YOLO-World头部模块,并继承自YOLOv8Head"""
    """YOLO-World头部"""
    def __init__(self, world_size=-1, *args, **kwargs) -> None:
        """初始化函数,设置world_size参数"""
        super().__init__(*args, **kwargs)
        self.world_size = world_size
    """YOLO World v8头部。"""
    def loss(self, img_feats: Tuple[Tensor], txt_feats: Tensor,
             batch_data_samples: Union[list, dict]) -> dict:
        """对上游网络的特征执行前向传播和损失计算"""
        outs = self(img_feats, txt_feats)
        # 快速版本
        loss_inputs = outs + (batch_data_samples['bboxes_labels'],
                              batch_data_samples['img_metas'])
        losses = self.loss_by_feat(*loss_inputs)
        return losses
    def loss_and_predict(
        self,
        img_feats: Tuple[Tensor],
        txt_feats: Tensor,
        batch_data_samples: SampleList,
        proposal_cfg: Optional[ConfigDict] = None
    ) -> Tuple[dict, InstanceList]:
        """执行头部的前向传播,然后从特征和数据样本中计算损失和预测。"""
        outputs = unpack_gt_instances(batch_data_samples)
        (batch_gt_instances, batch_gt_instances_ignore,
         batch_img_metas) = outputs
        outs = self(img_feats, txt_feats)
        loss_inputs = outs + (batch_gt_instances, batch_img_metas,
                              batch_gt_instances_ignore)
        losses = self.loss_by_feat(*loss_inputs)
        predictions = self.predict_by_feat(*outs,
                                           batch_img_metas=batch_img_metas,
                                           cfg=proposal_cfg)
        return losses, predictions
    def forward(self, img_feats: Tuple[Tensor],
                txt_feats: Tensor) -> Tuple[List]:
        """从上游网络前向传递特征。"""
        return self.head_module(img_feats, txt_feats)
    # 对象方法,用于对输入的图像特征、文本特征和批量数据样本进行前向传播,预测检测结果
    def predict(self,
                img_feats: Tuple[Tensor],
                txt_feats: Tensor,
                batch_data_samples: SampleList,
                rescale: bool = False) -> InstanceList:
        """Perform forward propagation of the detection head and predict
        detection results on the features of the upstream network.
        """
        # 从批量数据样本中提取图像元信息
        batch_img_metas = [
            data_samples.metainfo for data_samples in batch_data_samples
        ]
        # 对输入的图像特征和文本特征进行前向传播
        outs = self(img_feats, txt_feats)
        # 根据前向传播的结果和图像元信息进行预测,返回预测结果
        predictions = self.predict_by_feat(*outs,
                                           batch_img_metas=batch_img_metas,
                                           rescale=rescale)
        # 返回预测结果
        return predictions
    # 对象方法,用于进行带有测试时间数据增强的测试
    def aug_test(self,
                 aug_batch_feats,
                 aug_batch_img_metas,
                 rescale=False,
                 with_ori_nms=False,
                 **kwargs):
        """Test function with test time augmentation."""
        # 抛出未实现的错误,提示该方法尚未实现
        raise NotImplementedError('aug_test is not implemented yet.')

yolo-world 源码解析(五)(4)https://developer.aliyun.com/article/1483893

相关文章
|
1月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
77 2
|
3天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
3天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
3天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
26天前
|
缓存 监控 Java
Java线程池提交任务流程底层源码与源码解析
【11月更文挑战第30天】嘿,各位技术爱好者们,今天咱们来聊聊Java线程池提交任务的底层源码与源码解析。作为一个资深的Java开发者,我相信你一定对线程池并不陌生。线程池作为并发编程中的一大利器,其重要性不言而喻。今天,我将以对话的方式,带你一步步深入线程池的奥秘,从概述到功能点,再到背景和业务点,最后到底层原理和示例,让你对线程池有一个全新的认识。
54 12
|
22天前
|
PyTorch Shell API
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
|
4天前
|
安全 搜索推荐 数据挖掘
陪玩系统源码开发流程解析,成品陪玩系统源码的优点
我们自主开发的多客陪玩系统源码,整合了市面上主流陪玩APP功能,支持二次开发。该系统适用于线上游戏陪玩、语音视频聊天、心理咨询等场景,提供用户注册管理、陪玩者资料库、预约匹配、实时通讯、支付结算、安全隐私保护、客户服务及数据分析等功能,打造综合性社交平台。随着互联网技术发展,陪玩系统正成为游戏爱好者的新宠,改变游戏体验并带来新的商业模式。
|
1月前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
|
1月前
|
消息中间件 缓存 安全
Future与FutureTask源码解析,接口阻塞问题及解决方案
【11月更文挑战第5天】在Java开发中,多线程编程是提高系统并发性能和资源利用率的重要手段。然而,多线程编程也带来了诸如线程安全、死锁、接口阻塞等一系列复杂问题。本文将深度剖析多线程优化技巧、Future与FutureTask的源码、接口阻塞问题及解决方案,并通过具体业务场景和Java代码示例进行实战演示。
58 3
|
2月前
|
存储
让星星⭐月亮告诉你,HashMap的put方法源码解析及其中两种会触发扩容的场景(足够详尽,有问题欢迎指正~)
`HashMap`的`put`方法通过调用`putVal`实现,主要涉及两个场景下的扩容操作:1. 初始化时,链表数组的初始容量设为16,阈值设为12;2. 当存储的元素个数超过阈值时,链表数组的容量和阈值均翻倍。`putVal`方法处理键值对的插入,包括链表和红黑树的转换,确保高效的数据存取。
64 5

热门文章

最新文章

推荐镜像

更多