yolo-world 源码解析(五)(3)

简介: yolo-world 源码解析(五)

yolo-world 源码解析(五)(2)https://developer.aliyun.com/article/1483890

.\YOLO-World\yolo_world\models\data_preprocessors\__init__.py

# 版权声明,版权归腾讯公司所有
# 导入 YOLOWDetDataPreprocessor 类
from .data_preprocessor import YOLOWDetDataPreprocessor
# 导出 YOLOWDetDataPreprocessor 类,供外部使用
__all__ = ['YOLOWDetDataPreprocessor']

.\YOLO-World\yolo_world\models\dense_heads\yolo_world_head.py

# 导入所需的库和模块
import math
import copy
from typing import List, Optional, Tuple, Union, Sequence
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from mmcv.cnn import ConvModule
from mmengine.config import ConfigDict
from mmengine.model import BaseModule
from torch import Tensor
from mmengine.dist import get_dist_info
from mmengine.structures import InstanceData
from mmdet.structures import SampleList
from mmdet.utils import OptConfigType, InstanceList, OptInstanceList
from mmdet.models.utils import (
    multi_apply,
    unpack_gt_instances,
    filter_scores_and_topk)
from mmyolo.registry import MODELS
from mmyolo.models.dense_heads import YOLOv8HeadModule, YOLOv8Head
from mmyolo.models.utils import gt_instances_preprocess
from mmcv.cnn.bricks import build_norm_layer
# 注册模型类为MODELS
@MODELS.register_module()
class ContrastiveHead(BaseModule):
    """Contrastive Head for YOLO-World
    compute the region-text scores according to the
    similarity between image and text features
    Args:
        embed_dims (int): embed dim of text and image features
    """
    def __init__(self,
                 embed_dims: int,
                 init_cfg: OptConfigType = None) -> None:
        super().__init__(init_cfg=init_cfg)
        # 初始化偏置参数
        self.bias = nn.Parameter(torch.zeros([]))
        # 初始化logit_scale参数
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
    def forward(self, x: Tensor, w: Tensor) -> Tensor:
        """Forward function of contrastive learning."""
        # 对输入x进行L2范数归一化
        x = F.normalize(x, dim=1, p=2)
        # 对输入w进行L2范数归一化
        w = F.normalize(w, dim=-1, p=2)
        # 使用torch.einsum计算张量乘积
        x = torch.einsum('bchw,bkc->bkhw', x, w)
        # 对结果乘以logit_scale的指数并加上偏置
        x = x * self.logit_scale.exp() + self.bias
        return x
@MODELS.register_module()
class BNContrastiveHead(BaseModule):
    """ Batch Norm Contrastive Head for YOLO-World
    using batch norm instead of l2-normalization
    Args:
        embed_dims (int): embed dim of text and image features
        norm_cfg (dict): normalization params
    """
    # 定义一个名为ContrastiveHead的类,继承自nn.Module类
    def __init__(self,
                 embed_dims: int,
                 norm_cfg: ConfigDict,
                 init_cfg: OptConfigType = None) -> None:
        # 调用父类的初始化方法
        super().__init__(init_cfg=init_cfg)
        # 根据norm_cfg中的参数构建规范化层
        self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
        # 初始化偏置参数为0
        self.bias = nn.Parameter(torch.zeros([]))
        # 初始化logit_scale参数为-1.0,用于稳定性
        self.logit_scale = nn.Parameter(-1.0 * torch.ones([]))
    # 定义前向传播函数
    def forward(self, x: Tensor, w: Tensor) -> Tensor:
        """Forward function of contrastive learning."""
        # 对输入x进行规范化
        x = self.norm(x)
        # 对输入w进行L2范数规范化
        w = F.normalize(w, dim=-1, p=2)
        # 使用torch.einsum进行张量乘法操作
        x = torch.einsum('bchw,bkc->bkhw', x, w)
        # 对结果乘以logit_scale的指数,并加上偏置
        x = x * self.logit_scale.exp() + self.bias
        # 返回结果
        return x
# 注册 YOLO-World 的头部模块到模型注册表中
@MODELS.register_module()
class YOLOWorldHeadModule(YOLOv8HeadModule):
    """Head Module for YOLO-World
    Args:
        embed_dims (int): embed dim for text feautures and image features
        use_bn_head (bool): use batch normalization head
    """
    def __init__(self,
                 *args,
                 embed_dims: int,
                 use_bn_head: bool = False,
                 **kwargs) -> None:
        # 初始化头部模块的属性
        self.embed_dims = embed_dims
        self.use_bn_head = use_bn_head
        # 调用父类的初始化方法
        super().__init__(*args, **kwargs)
    def init_weights(self, prior_prob=0.01):
        """Initialize the weight and bias of PPYOLOE head."""
        # 调用父类的初始化权重方法
        super().init_weights()
        # 针对每个类别预测器和类别对比器进行初始化
        for cls_pred, cls_contrast, stride in zip(self.cls_preds,
                                                  self.cls_contrasts,
                                                  self.featmap_strides):
            cls_pred[-1].bias.data[:] = 0.0  # 重置偏置
            # 如果类别对比器有偏置属性
            if hasattr(cls_contrast, 'bias'):
                # 使用常数初始化类别对比器的偏置
                nn.init.constant_(
                    cls_contrast.bias.data,
                    math.log(5 / self.num_classes / (640 / stride)**2))
    def forward(self, img_feats: Tuple[Tensor],
                txt_feats: Tensor) -> Tuple[List]:
        """Forward features from the upstream network."""
        # 确保图像特征的数量等于级别数量
        assert len(img_feats) == self.num_levels
        # 将文本特征复制到每个级别的文本特征列表中
        txt_feats = [txt_feats for _ in range(self.num_levels)]
        # 调用 multi_apply 方法进行前向传播
        return multi_apply(self.forward_single, img_feats, txt_feats,
                           self.cls_preds, self.reg_preds, self.cls_contrasts)
    def forward_single(self, img_feat: Tensor, txt_feat: Tensor,
                       cls_pred: nn.ModuleList, reg_pred: nn.ModuleList,
                       cls_contrast: nn.ModuleList) -> Tuple:
        """Forward feature of a single scale level."""
        # 获取输入特征的形状信息
        b, _, h, w = img_feat.shape
        # 使用分类预测模型对图像特征进行预测
        cls_embed = cls_pred(img_feat)
        # 使用对比损失模型对分类嵌入进行预测
        cls_logit = cls_contrast(cls_embed, txt_feat)
        # 使用回归预测模型对图像特征进行预测
        bbox_dist_preds = reg_pred(img_feat)
        # 如果回归最大值大于1
        if self.reg_max > 1:
            # 重新调整bbox_dist_preds的形状
            bbox_dist_preds = bbox_dist_preds.reshape(
                [-1, 4, self.reg_max, h * w]).permute(0, 3, 1, 2)
            # TODO: get_flops脚本无法处理矩阵乘法的情况,稍后需要修复
            # 计算bbox_preds,softmax后与proj矩阵相乘
            bbox_preds = bbox_dist_preds.softmax(3).matmul(
                self.proj.view([-1, 1])).squeeze(-1)
            # 调整bbox_preds的形状
            bbox_preds = bbox_preds.transpose(1, 2).reshape(b, -1, h, w)
        else:
            bbox_preds = bbox_dist_preds
        # 如果是训练模式,返回分类预测、bbox预测和bbox距离预测
        if self.training:
            return cls_logit, bbox_preds, bbox_dist_preds
        # 如果是推理模式,返回分类预测和bbox预测
        else:
            return cls_logit, bbox_preds
@MODELS.register_module()
class YOLOWorldHead(YOLOv8Head):
    """注册YOLO-World头部模块,并继承自YOLOv8Head"""
    """YOLO-World头部"""
    def __init__(self, world_size=-1, *args, **kwargs) -> None:
        """初始化函数,设置world_size参数"""
        super().__init__(*args, **kwargs)
        self.world_size = world_size
    """YOLO World v8头部。"""
    def loss(self, img_feats: Tuple[Tensor], txt_feats: Tensor,
             batch_data_samples: Union[list, dict]) -> dict:
        """对上游网络的特征执行前向传播和损失计算"""
        outs = self(img_feats, txt_feats)
        # 快速版本
        loss_inputs = outs + (batch_data_samples['bboxes_labels'],
                              batch_data_samples['img_metas'])
        losses = self.loss_by_feat(*loss_inputs)
        return losses
    def loss_and_predict(
        self,
        img_feats: Tuple[Tensor],
        txt_feats: Tensor,
        batch_data_samples: SampleList,
        proposal_cfg: Optional[ConfigDict] = None
    ) -> Tuple[dict, InstanceList]:
        """执行头部的前向传播,然后从特征和数据样本中计算损失和预测。"""
        outputs = unpack_gt_instances(batch_data_samples)
        (batch_gt_instances, batch_gt_instances_ignore,
         batch_img_metas) = outputs
        outs = self(img_feats, txt_feats)
        loss_inputs = outs + (batch_gt_instances, batch_img_metas,
                              batch_gt_instances_ignore)
        losses = self.loss_by_feat(*loss_inputs)
        predictions = self.predict_by_feat(*outs,
                                           batch_img_metas=batch_img_metas,
                                           cfg=proposal_cfg)
        return losses, predictions
    def forward(self, img_feats: Tuple[Tensor],
                txt_feats: Tensor) -> Tuple[List]:
        """从上游网络前向传递特征。"""
        return self.head_module(img_feats, txt_feats)
    # 对象方法,用于对输入的图像特征、文本特征和批量数据样本进行前向传播,预测检测结果
    def predict(self,
                img_feats: Tuple[Tensor],
                txt_feats: Tensor,
                batch_data_samples: SampleList,
                rescale: bool = False) -> InstanceList:
        """Perform forward propagation of the detection head and predict
        detection results on the features of the upstream network.
        """
        # 从批量数据样本中提取图像元信息
        batch_img_metas = [
            data_samples.metainfo for data_samples in batch_data_samples
        ]
        # 对输入的图像特征和文本特征进行前向传播
        outs = self(img_feats, txt_feats)
        # 根据前向传播的结果和图像元信息进行预测,返回预测结果
        predictions = self.predict_by_feat(*outs,
                                           batch_img_metas=batch_img_metas,
                                           rescale=rescale)
        # 返回预测结果
        return predictions
    # 对象方法,用于进行带有测试时间数据增强的测试
    def aug_test(self,
                 aug_batch_feats,
                 aug_batch_img_metas,
                 rescale=False,
                 with_ori_nms=False,
                 **kwargs):
        """Test function with test time augmentation."""
        # 抛出未实现的错误,提示该方法尚未实现
        raise NotImplementedError('aug_test is not implemented yet.')

yolo-world 源码解析(五)(4)https://developer.aliyun.com/article/1483893

相关文章
|
7月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
658 29
|
7月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
191 4
|
7月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
7月前
|
移动开发 前端开发 JavaScript
从入门到精通:H5游戏源码开发技术全解析与未来趋势洞察
H5游戏凭借其跨平台、易传播和开发成本低的优势,近年来发展迅猛。接下来,让我们深入了解 H5 游戏源码开发的技术教程以及未来的发展趋势。
|
7月前
|
存储 前端开发 JavaScript
在线教育网课系统源码开发指南:功能设计与技术实现深度解析
在线教育网课系统是近年来发展迅猛的教育形式的核心载体,具备用户管理、课程管理、教学互动、学习评估等功能。本文从功能和技术两方面解析其源码开发,涵盖前端(HTML5、CSS3、JavaScript等)、后端(Java、Python等)、流媒体及云计算技术,并强调安全性、稳定性和用户体验的重要性。
|
7月前
|
负载均衡 JavaScript 前端开发
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
10月前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
10月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
8月前
|
机器学习/深度学习 自然语言处理 算法
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
1387 0
|
9月前
|
自然语言处理 数据处理 索引
mindspeed-llm源码解析(一)preprocess_data
mindspeed-llm是昇腾模型套件代码仓,原来叫"modelLink"。这篇文章带大家阅读一下数据处理脚本preprocess_data.py(基于1.0.0分支),数据处理是模型训练的第一步,经常会用到。
255 0

推荐镜像

更多
  • DNS