python图工具中基于随机块模型动态网络社团检测

简介: python图工具中基于随机块模型动态网络社团检测

这是“政治博客圈和2004年美国大选”中的政治博客网络图,但是边缘束是使用随机块模型确定的(注:下图与图相同(即,布局和数据相同))。Tiago论文中的5-我只是在上面放了一个黑色背景 。

边缘配色方案与Adamic和Glance的原始论文中的相同,即每个节点对应一个博客URL,颜色反映政治取向,红色代表保守派,蓝色代表自由派。橙色边从自由派博客到保守派博客,紫色边从保守派到自由派(参见Adamic和Glance中的图1)。


颜色方案与原始论文中的颜色方案相同,即每个节点对应一个博客URL,颜色反映政治取向,红色代表保守派,蓝色代表自由派。橙色边从自由派博客到保守派博客,紫色边从保守派到自由派(参见Adamic和Glance中的图1)。绘制了所有1,490个节点和19,090条边。


每个博客的网址都在每个节点旁边绘制,这是一个特写:

import graph_tool.all as gt
import math

g = gt.collection.data["polblogs"] #  http://www2.scedu.unibo.it/roversi/SocioNet/AdamicGlanceBlogWWW.pdf

使颜色正确需要一些调整:

#use 1->Republican, 2->Democrat
red_blue_map = {1:(1,0,0,1),0:(0,0,1,1)}
plot_color = g.new_vertex_property('vector<double>')
g.vertex_properties['plot_color'] = plot_color
for v in g.vertices():
    plot_color[v] = red_blue_map[g.vertex_properties['value'][v]]

为了使用分层边缘捆绑算法,我们首先需要进行某种聚类。一种明显的方法是根据其政治隶属关系为每个节点分配一个群集:

这些集群用于形成一个层次结构,该层次结构使人们可以轻松确定标准的树布局(如下图所示)。通过沿树内插来绘制层次边缘束。

这是上图使用的树:


最后,我们设置文本旋转并保存图形。

相关文章
|
2月前
|
运维 监控 数据可视化
Python 网络请求架构——统一 SOCKS5 接入与配置管理
通过统一接入端点与标准化认证,集中管理配置、连接策略及监控,实现跨技术栈的一致性网络出口,提升系统稳定性、可维护性与可观测性。
|
3月前
|
安全 网络协议 算法
Nmap网络扫描工具详细使用教程
Nmap 是一款强大的网络发现与安全审计工具,具备主机发现、端口扫描、服务识别、操作系统检测及脚本扩展等功能。它支持多种扫描技术,如 SYN 扫描、ARP 扫描和全端口扫描,并可通过内置脚本(NSE)进行漏洞检测与服务深度枚举。Nmap 还提供防火墙规避与流量伪装能力,适用于网络管理、渗透测试和安全研究。
492 1
|
3月前
|
存储 缓存 测试技术
理解Python装饰器:简化代码的强大工具
理解Python装饰器:简化代码的强大工具
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
2月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
3月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
209 2
|
3月前
|
JavaScript Java 大数据
基于python的网络课程在线学习交流系统
本研究聚焦网络课程在线学习交流系统,从社会、技术、教育三方面探讨其发展背景与意义。系统借助Java、Spring Boot、MySQL、Vue等技术实现,融合云计算、大数据与人工智能,推动教育公平与教学模式创新,具有重要理论价值与实践意义。
|
3月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
3月前
|
机器学习/深度学习 编解码 Python
Python图片上采样工具 - RealESRGANer
Real-ESRGAN基于深度学习实现图像超分辨率放大,有效改善传统PIL缩放的模糊问题。支持多种模型版本,推荐使用魔搭社区提供的预训练模型,适用于将小图高质量放大至大图,放大倍率越低效果越佳。
259 3
|
3月前
|
机器学习/深度学习 数据采集 并行计算
多步预测系列 | LSTM、CNN、Transformer、TCN、串行、并行模型集合研究(Python代码实现)
多步预测系列 | LSTM、CNN、Transformer、TCN、串行、并行模型集合研究(Python代码实现)
340 2

推荐镜像

更多