Python+Jinja2实现接口数据批量生成工具

简介: 在做接口测试的时候,我们经常会遇到一种情况就是要对接口的参数进行各种可能的校验,手动修改很麻烦,尤其是那些接口参数有几十个甚至更多的,有没有一种方法可以批量的对指定参数做生成处理呢。

在做接口测试的时候,我们经常会遇到一种情况就是要对接口的参数进行各种可能的校验,手动修改很麻烦,尤其是那些接口参数有几十个甚至更多的,有没有一种方法可以批量的对指定参数做生成处理呢。

答案是肯定的!

python的jinja2模板库可以很好的满足我们的需求,通过维护一个原始数据模板,将我们想要动态生成的变量模板化,就可以实现需求。


现在我们有这样的一个请求数据

{
    "abc":"123",
    "p2p":"123",
    "smid":"20180807220733939b66d80092eea34ce9e77f30bedff12345b7d5a3faa11b",
    "test":{
        "test1":"1",
        "test2":"2"
    },
    "test3":"3"
}

image.gif

如果想对其中的smid字段进行批量修改并生成新的请求数据就可以进行如下操作:

1、首先新建一个名为fp_template.txt的文本文件;

2、将上面的接口请求数据复制粘贴进这个txt文件中,我们以此作为“模板文件”;

3、新建一个predata文件夹用来存放生成后的数据文件;

4、对smid字段进行模板化(模板格式可以参考jinja2的语法,这里不做赘述),于是上面的请求参数就变成了下面这样:

{
    "abc":"123",
    "p2p":"123",
    "smid":"{{ smid }}",
    "test":{
        "test1":"1",
        "test2":"2"
    },
    "test3":"3"
}

image.gif

实现代码代码如下:

# -*- coding: UTF-8 -*-
from jinja2 import Environment,FileSystemLoader
import os
class DataTemplateFaker:
    def __init__(self):
        self.aesPath = os.getcwd()#获取启动路径
        self.resultPath = self.aesPath + "/predata/"#指定用来保存生成数据的路径
        self.templateFile = "fp_template.txt"
    #修改我们要批量生成smid的格式
    def init_smid(self,start,end):
        smidArg = [x for x in range(start, end)]
        re = []
        for n in smidArg:
            re.append("20180807220733939b66d80092eea34ce9e77f30bedff" + str(n) + "b7d5a3faa11b")
        return re
    #操作模板文件
    def preContent(self,arg):
        env = Environment(loader=FileSystemLoader('./'))
        tpl = env.get_template(self.templateFile)
        renderContent = tpl.render(smid=arg)
        return renderContent
    #通过修改的smid列表批量替换模板文件并写入指定文件中
    def makeContent(self,preList):
        x = 0
        for i in preList:
            x = x + 1
            filename = str(self.resultPath) + 'data_' + str(x) + '.txt' #用以区分存放新生成的请求数据(也可以写到一个文件中)
            renderContent = self.preContent(i)
            with open(filename, 'w') as f:
                f.writelines(renderContent)
                f.close()
if __name__ == "__main__":
    AT = DataTemplateFaker()
    reList = AT.init_smid(1,10)#控制生成数据的范围
    AT.makeContent(reList)

image.gif

运行程序,就能得到新生成的数据

当然,我们也可以对其他的参数进行指定修改,如修改p2p,只需要修改模板文件:

{
    "abc":"123",
    "p2p":"{{ p2p }}",
    "smid":"20180807220733939b66d80092eea34ce9e77f30bedff12345b7d5a3faa11b",
    "test":{
        "test1":"1",
        "test2":"2"
    },
    "test3":"3"
}

image.gif

然后在代码中加入一个方法init_p2p()

# -*- coding: UTF-8 -*-
from jinja2 import Environment,FileSystemLoader
import os
class DataTemplateFaker:
    def __init__(self):
        self.aesPath = os.getcwd()#获取启动路径
        self.resultPath = self.aesPath + "/predata/"#指定用来保存生成数据的路径
        self.templateFile = "fp_template.txt"
    #修改我们要批量生成smid的格式
    def init_smid(self,start,end):
        smidArg = [x for x in range(start, end)]
        re = []
        for n in smidArg:
            re.append("20180807220733939b66d80092eea34ce9e77f30bedff" + str(n) + "b7d5a3faa11b")
        return re
    #修改我们要批量生成p2p的格式   
    def init_p2p(self,start,end):
        p2pArg = [x for x in range(start, end)]
        return p2pArg
    #操作模板文件
    def preContent(self,arg):
        env = Environment(loader=FileSystemLoader('./'))
        tpl = env.get_template(self.templateFile)
        renderContent = tpl.render(smid=arg)
        return renderContent
    #通过修改的smid列表批量替换模板文件并写入指定文件中
    def makeContent(self,preList):
        x = 0
        for i in preList:
            x = x + 1
            filename = str(self.resultPath) + 'data_' + str(x) + '.txt' #用以区分存放新生成的请求数据(也可以写到一个文件中)
            renderContent = self.preContent(i)
            with open(filename, 'w') as f:
                f.writelines(renderContent)
                f.close()
if __name__ == "__main__":
    AT = DataTemplateFaker()
    reList = AT.init_p2p(1,10)#控制生成数据的范围
    AT.makeContent(reList)

image.gif

这只是一个很简单的demo,当然还有很多可优化的地方,比如多字段同时修改、引入faker库进行关联生成伪造数据等,越是复杂且参数繁多的接口越适用。

目录
相关文章
|
1天前
|
算法 数据挖掘 数据处理
搜索新境界:Python二分查找变种实战,精准定位数据不是梦!
【7月更文挑战第13天】二分查找算法以O(log n)效率在有序数组中查找数据。基础算法通过不断分割数组对比中间元素。Python实现变种包括:1) 查找目标值的第一个出现位置,找到后向左搜索;2) 查找目标值的最后一个出现位置,找到后向右搜索。这些变种在数据分析和索引构建等场景中极具价值,提升处理效率。
|
2天前
|
存储 算法 搜索推荐
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
【7月更文挑战第12天】归并排序是高效稳定的排序算法,采用分治策略。Python 实现包括递归地分割数组及合并已排序部分。示例代码展示了如何将 `[12, 11, 13, 5, 6]` 分割并归并成有序数组 `[5, 6, 11, 12, 13]`。虽然 $O(n log n)$ 时间复杂度优秀,但需额外空间,适合大规模数据排序。对于小规模数据,可考虑其他算法。**
13 4
|
1天前
|
数据格式 Python
Python代码示例,读取excel表格,将行数据转为列数据。(10)
【7月更文挑战第10天】Python代码示例,读取excel表格,将行数据转为列数据。
12 2
|
20小时前
|
SQL API Python
`bandit`是一个Python静态代码分析工具,专注于查找常见的安全漏洞,如SQL注入、跨站脚本(XSS)等。
`bandit`是一个Python静态代码分析工具,专注于查找常见的安全漏洞,如SQL注入、跨站脚本(XSS)等。
19 8
|
4天前
|
算法 Python
深度剖析!Python中图的DFS与BFS遍历,让你的数据搜索快到飞起
【7月更文挑战第10天】在数据结构和算法中,图遍历是核心概念,Python支持DFS和BFS来探索图。DFS递归深入节点,利用栈,先访问深处;BFS使用队列,层次遍历,先访问最近节点。
18 1
|
20小时前
|
网络协议 安全 Shell
`nmap`是一个开源的网络扫描工具,用于发现网络上的设备和服务。Python的`python-nmap`库允许我们在Python脚本中直接使用`nmap`的功能。
`nmap`是一个开源的网络扫描工具,用于发现网络上的设备和服务。Python的`python-nmap`库允许我们在Python脚本中直接使用`nmap`的功能。
15 7
|
20小时前
|
数据可视化 Python
时间序列分析是一种统计方法,用于分析随时间变化的数据序列。在金融、经济学、气象学等领域,时间序列分析被广泛用于预测未来趋势、检测异常值、理解周期性模式等。在Python中,`statsmodels`模块是一个强大的工具,用于执行各种时间序列分析任务。
时间序列分析是一种统计方法,用于分析随时间变化的数据序列。在金融、经济学、气象学等领域,时间序列分析被广泛用于预测未来趋势、检测异常值、理解周期性模式等。在Python中,`statsmodels`模块是一个强大的工具,用于执行各种时间序列分析任务。
5 0
|
20小时前
|
机器学习/深度学习 PyTorch TensorFlow
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
4 0
|
21小时前
|
数据可视化 Linux 数据格式
`seaborn`是一个基于`matplotlib`的Python数据可视化库,它提供了更高级别的接口来绘制有吸引力的和信息丰富的统计图形。`seaborn`的设计目标是使默认图形具有吸引力,同时允许用户通过调整绘图参数来定制图形。
`seaborn`是一个基于`matplotlib`的Python数据可视化库,它提供了更高级别的接口来绘制有吸引力的和信息丰富的统计图形。`seaborn`的设计目标是使默认图形具有吸引力,同时允许用户通过调整绘图参数来定制图形。
5 0
|
21小时前
|
Python
`matplotlib`是Python中一个非常流行的绘图库,它提供了丰富的绘图接口,包括二维和三维图形的绘制。`Axes3D`是`matplotlib`中用于创建三维坐标轴的对象,而`plot_surface`则是用于在三维空间中绘制表面的函数。
`matplotlib`是Python中一个非常流行的绘图库,它提供了丰富的绘图接口,包括二维和三维图形的绘制。`Axes3D`是`matplotlib`中用于创建三维坐标轴的对象,而`plot_surface`则是用于在三维空间中绘制表面的函数。
5 0