R语言马尔可夫转换模型研究交通伤亡人数事故预测

简介: R语言马尔可夫转换模型研究交通伤亡人数事故预测


摘要

本文描述了R语言中马尔克夫转换模型的分析过程。首先,对模拟数据集进行详细建模。接下来,将马尔可夫转换模型拟合到具有离散响应变量的真实数据集。用于验证对这些数据集建模的不同方法。


模拟实例

示例数据是一个模拟数据集,用于展示如何检测两种不同模式的存在:一种模式中的响应变量高度相关,另一种模式中的响应仅取决于外生变量x。自相关观测值的区间为1到100、151到180 和251到300。每种方案的真实模型为:

图1中的曲线表明,在不存在自相关的区间中,响应变量y具有与协变量x相似的行为。拟合线性模型以研究协变量x如何解释变量响应y。

> summary(mod)

Call:
lm(formula = y ~ x, data = example)

Residuals:

      Min 1Q Median 3Q Max

-2.8998 -0.8429 -0.0427 0.7420 4.0337

> plot(ts(example))

图1:模拟数据,y变量是响应变量

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept)  9.0486  0.1398  64.709  < 2e-16 ***
x  0.8235  0.2423  3.398  0.00077 ***

Residual standard error: 1.208 on 298 degrees of freedom
Multiple R-squared: 0.03731, Adjusted R-squared: 0.03408
F-statistic: 11.55 on 1 and 298 DF, p-value: 0.0007701

协变量确实很重要,但是模型解释的数据行为非常糟糕。图1中的线性模型残差图表明,它们的自相关很强。残差的诊断图(图2)确认它们似乎不是白噪声,并且具有自相关关系。接下来,将自回归马尔可夫转换模型(MSM-AR)拟合到数据。自回归部分设置为1。为了指示所有参数在两个周期中都可以不同,将转换参数(sw)设置为具有四个分量的矢量。拟合线性模型时的最后一个值称为残差。

标准偏差。有一些选项可控制估算过程,例如用于指示是否完成了过程并行化的逻辑参数。

Markov Switching Model


AIC  BIC  logLik
637.0736 693.479 -312.5368
Coefficients:
Regime 1
---------
Estimate Std. Error t value  Pr(>|t|)
(Intercept)(S)  0.8417  0.3025  2.7825  0.005394 **
x(S)  -0.0533  0.1340 -0.3978  0.690778
y_1(S)  0.9208  0.0306 30.0915 < 2.2e-16 ***
---
Signif. codes:  0  '***' 0.001  '**' 0.01  '*' 0.05  '.' 0.1  ' ' 1

Residual standard error: 0.5034675
Multiple R-squared: 0.8375

Standardized Residuals:
Min  Q1  Med  Q3  Max
-1.5153666657 -0.0906543311  0.0001873641  0.1656717256  1.2020898986
Regime 2
---------  Estimate Std. Error t value  Pr(>|t|)
(Intercept)(S)  8.6393  0.7244 11.9261 < 2.2e-16 ***
x(S)  1.8771  0.3107  6.0415 1.527e-09 ***
y_1(S)  -0.0569  0.0797 -0.7139  0.4753
---
Signif. codes:  0  '***' 0.001  '**' 0.01  '*' 0.05  '.' 0.1  ' ' 1

Residual standard error: 0.9339683
Multiple R-squared: 0.2408
Standardized Residuals:
Min Q1 Med Q3 Max
-2.31102193 -0.03317756 0.01034139 0.04509105 2.85245598
Transition probabilities:
Regime 1 Regime 2
Regime 1 0.98499728 0.02290884
Regime 2 0.01500272 0.97709116

模型mod.mswm具有协方差x非常显着的状态,而在其他情况下,自相关变量也非常重要。两者的R平方均具有较高的值。最后,转移概率矩阵具有较高的值,这表明很难从接通状态更改为另一个状态。该模型可以完美地检测每个状态的周期。残差看起来像是白噪声,它们适合正态分布。而且,自相关消失了。


图形显示已完美检测到每个方案的周期。

> plot(mod.mswm,expl="x")


交通事故


交通数据包含2010年西班牙交通事故的每日人数,平均每日温度和每日降水量。该数据的目的是研究死亡人数与气候条件之间的关系。由于在周末和工作日变量之间存在不同的行为,因此我们说明了在这种情况下使用广义马尔科夫转换模型的情况。

在此示例中,响应变量是计数变量。因此,我们拟合了泊松广义线性模型。

> summary(model)
Call:
glm(formula = NDead ~ Temp + Prec, family = "poisson", data = traffic)

Deviance Residuals:

Min  1Q  Median  3Q  Max
-3.1571  -1.0676  -0.2119  0.8080  3.0629

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.1638122 0.0808726 14.391 < 2e-16 ***
Temp 0.0225513 0.0041964 5.374 7.7e-08 ***
Prec 0.0002187 0.0001113 1.964 0.0495 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 597.03 on 364 degrees of freedom
Residual deviance: 567.94 on 362 degrees of freedom
AIC: 1755.9
Number of Fisher Scoring iterations: 5

下一步,使用拟合马尔可夫转换模型。为了适应广义马尔可夫转换模型,必须包含族参数,而且glm没有标准偏差参数,因此sw参数不包含其切换参数。

>
Markov Switching Model


AIC  BIC  logLik
1713.878 1772.676 -850.9388
Coefficients:
Regime 1
---------
Estimate Std. Error t value  Pr(>|t|)
(Intercept)(S)  0.7649  0.1755  4.3584  1.31e-05 ***
Temp(S)  0.0288  0.0082  3.5122 0.0004444 ***
Prec(S)  0.0002  0.0002  1.0000 0.3173105
---
Signif. codes:  0  '***' 0.001  '**' 0.01  '*' 0.05  '.' 0.1  ' ' 1

Regime 2
---------
Estimate Std. Error t value Pr(>|t|)

(Intercept)(S)  1.5659  0.1576  9.9359  < 2e-16 ***
Temp(S)  0.0194  0.0080  2.4250  0.01531 *
Prec(S)  0.0004  0.0002  2.0000  0.04550 *
---
Signif. codes:  0  '***' 0.001  '**' 0.01  '*' 0.05  '.' 0.1  ' ' 1

Transition probabilities:
Regime 1 Regime 2
Regime 1 0.7287732 0.4913893
Regime 2 0.2712268 0.5086107

两种状态都有显着的协变量,但降水协变量仅在这两种状态之一中是显着的。

Aproximate intervals for the coefficients. Level= 0.95
(Intercept):
Lower Estimation Upper
Regime 1 0.4208398 0.7648733 1.108907

Regime 2 1.2569375 1.5658582 1.874779
Temp:
Lower Estimation Upper
Regime 1 0.012728077 0.02884933 0.04497059
Regime 2 0.003708441 0.01939770 0.03508696
Prec:
Lower Estimation Upper
Regime 1 -1.832783e-04 0.0001846684 0.0005526152
Regime 2 -4.808567e-05 0.0004106061 0.0008692979

由于模型是通用线性模型的扩展,因此从类对象计算出图中的Pearson残差。该残差有白噪声的经典结构。残差不是自相关的,但它们与正态分布不太吻合。但是,Pearson残差的正态性不是广义线性模型验证的关键条件。

> plot(m1,which=2)


我们可以看到短时间内的状态分配,因为较大的状态基本上包含工作日。

相关文章
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
3月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
4月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
58 3
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
7月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。