R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析

简介: R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析

在先前我们提供了Nelson-Siegel模型收敛失败的示例,我们已经展示了它的一些缺陷。

蒙特卡洛模拟帮助

for(j in 1:N_SIMULATIONS)

{

    oldYields = NSrates(pp, MATURITY_BASES)

    newYields = oldYields + rnorm(N_MAT, rep(0.0, N_MAT), VOLAs)

    newMATs = MATURITY_BASES - 1.0/365 #next day all mats become 1 day shorter

    pp = Nelson.Siegel(newYields, newMATs)

    newNsYields = NSrates(pp, newMATs)



    npo = c(newYields, oldYields)

    plot(MATURITY_BASES, oldYields, ylim=c(min(npo), max(npo)))

    lines(MATURITY_BASES, oldYields)

    points(MATURITY_BASES, newYields, col="red", pch=4)

    points(newMATs, newNsYields, col="blue")

    lines(newMATs, newNsYields, col="blue")

     

    oldYieldsArray[j,] = as.numeric(oldYields)

    newYieldsArray[j,] = as.numeric(newYields)

    newNsYieldsArray[j,] = as.numeric(newNsYields)

    maxDistanceArray[j] = max( abs(oldYieldsArray[j,] - newNsYieldsArray[j,]) )

    relativeMaxDistanceArray[j] =  maxDistanceArray[j] / max(abs(oldYieldsArray[j,]))

    paramArray[j,] = as.numeric(pp)

}



plot(density(maxDistanceArray))

plot(density(log(maxDistanceArray)))

idx=which.max(maxDistanceArray)

maxDistanceArray[which.max(maxDistanceArray)]

relativeMaxDistanceArray[which.max(relativeMaxDistanceArray)]

:我们要做的是:我们从一些收益率曲线开始,然后逐步地随机修改收益率,最后尝试拟合NS模型以新的收益。因此我们对此进行了模拟。

请注意,对于Nelson-Siegel模型,此Monte-Carlo模拟在某种意义上是“仁慈的”,因为我们始终假定前一步的收益(旧收益率)   与NS曲线完全匹配。但是,即使如此仁慈也无法完全避免麻烦。我们如何发现这些麻烦?在每一步中,我们计算两条相邻曲线之间的最大距离(supremum-norm):

maxDistanceArray[j] = max( abs(oldYieldsArray[j,] - newNsYieldsArray[j,]) )

最后,我们仅找到到上一条曲线的最大距离的步骤,这就是收敛失败的示例。

好的,发现问题了,但是该怎么办呢?maxDistanceArray的概率密度   如下所示:

分布尾部在视觉上在0.08处减小,但对于收益率曲线而言,每天偏移8个基点并不罕见。因此,尽管我们进行了1e5 = 10000蒙特卡洛模拟,但只有极少数情况,我们可以将其标记为不良。训练神经网络绝对是不够的。而且,正如我们之前指出的那样,两条Nelson-Siegel曲线可能彼此非常接近,但其参数却彼此远离。由于模型是线性的, 因此有可能假设beta的极大变化(例如,超过95个位数)是异常值,并将其标记为不良。

idx = intersect(intersect(which(b0 < q_b0), which(b1 < q_b1)), which(b2 < q_b2))

par(mfrow=c(3,3))

plot(density(log(b0)))

plot(density(log(b1)))

plot(density(log(b2)))

plot(density(log(b0[idx])))

plot(density(log(b1[idx])))

plot(density(log(b2[idx])))

plot(density(b0[idx]))

plot(density(b1[idx]))

plot(density(b2[idx]))



#de-mean

b0 = b0-mean(b0)

b1 = b1-mean(b1)

b2 = b2-mean(b2)



#train neural network

X = cbind(b0, b1, b2)

Y = array(0, dim=(N_SIMULATIONS-1))

Y[idx] = 1

然后我们可以训练神经网络

SPLT = 0.8

library(keras)

b = floor(SPLT*(N_SIMULATIONS-1))






  

plot(history)

model %>% evaluate(x_test, y_test)

神经网络不仅在样本中而且在验证集上都提供了高精度。

如果模拟新数据集,例如VOLAs = 0.005*sqrt(MATURITY_BASES) ,  VOLAs = 0.05*sqrt(MATURITY_BASES) 对模型进行修改  将无法识别新数据集上的不良情况。

不足与展望:尽管我们在两种情况下均对数据进行了归一化和平均化,但是模型波动性的线性变化对尾部分位数具有很高的非线性影响。

那么,我们是否需要一个更复杂的AI模型?

相关文章
|
7天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
1月前
|
机器学习/深度学习 数据采集 存储
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
217 2
|
9天前
|
存储 安全 网络安全
网络安全法律框架:全球视角下的合规性分析
网络安全法律框架:全球视角下的合规性分析
20 1
|
18天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
|
20天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
65 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
18天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9-2):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
|
29天前
|
机器学习/深度学习 编解码 算法
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
39 0
|
1月前
|
安全 网络协议 物联网
物联网僵尸网络和 DDoS 攻击的 CERT 分析
物联网僵尸网络和 DDoS 攻击的 CERT 分析
|
1月前
|
存储 算法 数据可视化
单细胞分析 | Cicero+Signac 寻找顺式共可及网络
单细胞分析 | Cicero+Signac 寻找顺式共可及网络
25 0
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。

热门文章

最新文章