计算机网络中的 OSI、TCP/IP 和混合模型

简介: 【4月更文挑战第9天】

在计算机网络领域,OSI(开放系统互联)模型、TCP/IP(传输控制协议/因特网协议)模型和混合模型是三种常见的网络体系结构。本文将详细介绍这三种模型,包括它们的历史、结构、功能以及在网络通信中的作用。

OSI模型

OSI模型的历史可以追溯到20世纪80年代初。在那个时候,计算机网络的发展已经越来越迅速,但由于不同厂商、组织和国家开发的网络设备和协议之间缺乏统一标准,导致了网络之间的互联变得异常困难。为了解决这个问题,国际标准化组织(ISO)于1984年提出了OSI模型,希望能够定义一套通用的网络体系结构和协议,使得不同的网络设备和协议能够互操作,从而实现全球范围内的互联网。

结构

OSI模型采用了层次化的结构,将网络通信划分为七个抽象层次,每个层次都有特定的功能和责任,层与层之间通过接口进行通信,上层向下层提供服务,下层向上层提供服务。

  1. 物理层:位于最底层,负责传输比特流,定义了电气特性、接口标准等。它主要关注的是如何在传输介质上传输数据。
  2. 数据链路层:处理帧的传输,包括帧的创建、传输、接收、检错和纠错等功能。它主要关注的是数据在节点之间的传输。
  3. 网络层:处理数据包的路由和转发,实现不同网络之间的通信,提供了端到端的逻辑传输。它主要关注的是如何将数据从源主机传输到目标主机。
  4. 传输层:提供端到端的数据传输服务,负责分段、传输控制等。它主要关注的是如何确保数据在源主机和目标主机之间可靠地传输。
  5. 会话层:管理通信会话,包括建立、维护和终止会话。它主要关注的是如何在通信节点之间建立、管理和终止会话。
  6. 表示层:处理数据的格式、编码和加密,确保不同系统间的数据交换。它主要关注的是如何表示和转换数据。
  7. 应用层:提供用户接口和网络服务,如HTTP、FTP等。它主要关注的是为用户提供网络服务。

OSI模型的主要功能是将网络通信分解为七个独立的层次,每个层次都有特定的功能和责任,使得网络通信更加清晰和可控。通过严格定义每个层次的功能和接口,OSI模型使得不同厂商、组织和国家开发的网络设备和协议能够互操作,从而提高了网络的可扩展性和灵活性。

TCP/IP模型

TCP/IP模型是由美国国防部在20世纪70年代为其ARPANET项目开发的网络协议套件。最初,ARPANET项目使用的是一种简单的通信协议,但随着网络规模的扩大和复杂性的增加,需要一种更加灵活和可靠的协议套件来支持互联网的发展。于是,TCP/IP协议套件应运而生。

结构

TCP/IP模型是一种较为简单的网络体系结构,它将网络通信分为四个层次,相较于OSI模型,TCP/IP模型合并了表示层和会话层,简化了网络通信的结构。

  1. 网络接口层:位于底层,负责物理介质的访问和数据帧的封装。它主要关注的是如何在物理网络上传输数据。
  2. 网际层:处理数据包的路由和转发,实现主机间的通信,是TCP/IP协议套件的核心部分。它主要关注的是如何在网络中传输数据。
  3. 传输层:提供端到端的数据传输服务,包括TCP和UDP两种协议。TCP提供可靠的、面向连接的数据传输服务,而UDP则提供不可靠的、无连接的数据传输服务。
  4. 应用层:提供网络应用服务,如HTTP、DNS等。它主要关注的是为用户提供网络服务。

TCP/IP模型的主要功能是提供一种简单而灵活的网络体系结构和协议套件,使得互联网的发展更加便捷和高效。TCP/IP模型采用了分层的结构,每个层次都有特定的功能和责任,使得网络通信更加清晰和可控。TCP/IP协议套件的核心协议是IP协议,它负责数据包的路由和转发,实现了全球范围内的互联网。

混合模型

在现实网络环境中,往往会发现纯粹采用OSI模型或TCP/IP模型存在一些不足之处,因此出现了混合模型的概念。混合模型结合了OSI模型和TCP/IP模型的优点,旨在克服它们各自的局限性,提供更加灵活和实用的网络体系结构。

最常见的混合模型之一是将OSI模型的表示层和会话层合并到TCP/IP模型的应用层,形成一个五层的混合模型。

这种混合模型既保留了TCP/IP模型的简洁性,又兼具了OSI模型的通用性。应用层不仅提供了网络应用服务,还负责数据的格式化、编码和会话管理等功能。

另一种常见的混合模型是在TCP/IP模型的基础上增加表示层和会话层,形成一个六层的混合模型。

这种混合模型使得网络应用能够更好地处理数据格式、编码和会话管理等功能,提高了网络的灵活性和可扩展性。

混合模型的主要功能是结合了OSI模型和TCP/IP模型的优点,克服了它们各自的局限性,提供了更加灵活和实用的网络体系结构。混合模型使得网络工程师和系统管理员能够根据实际需求选择合适的网络体系结构,更好地设计、管理和维护复杂的计算机网络系统。

目录
相关文章
|
21天前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
71 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
13天前
|
机器学习/深度学习 数据采集 网络安全
使用Python实现深度学习模型:智能网络安全威胁检测
使用Python实现深度学习模型:智能网络安全威胁检测
58 5
|
11天前
|
机器学习/深度学习 算法 搜索推荐
图神经网络综述:模型与应用
图神经网络综述:模型与应用
|
16天前
|
存储 机器人 Linux
Netty(二)-服务端网络编程常见网络IO模型讲解
Netty(二)-服务端网络编程常见网络IO模型讲解
|
1天前
|
网络协议 Java 程序员
【网络】TCP/IP
【网络】TCP/IP
8 0
|
28天前
|
网络协议 网络架构 数据格式
TCP/IP基础:工作原理、协议栈与网络层
TCP/IP(传输控制协议/互联网协议)是互联网通信的基础协议,支持数据传输和网络连接。本文详细阐述了其工作原理、协议栈构成及网络层功能。TCP/IP采用客户端/服务器模型,通过四个层次——应用层、传输层、网络层和数据链路层,确保数据可靠传输。网络层负责IP寻址、路由选择、分片重组及数据包传输,是TCP/IP的核心部分。理解TCP/IP有助于深入掌握互联网底层机制。
157 2
|
1月前
|
网络协议 Java
谈谈TCP/IP网络编程
【9月更文挑战第1天】在当今数字化的世界中,网络通信是连接各种设备和系统的关键。TCP/IP协议作为互联网通信的基石,被广泛应用于各种网络场景。了解TCP/IP网络编程的概念,并掌握如何在Java中实现TCP/IP通讯,对于开发人员来说是非常重要的。
46 4
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习模型之深度神经网络的特点
深度神经网络(Deep Neural Networks, DNNs)是一类机器学习模型,通过多个层级(层)的神经元来模拟人脑的工作方式,从而实现复杂的数据处理和模式识别任务。
36 1
|
1月前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
2月前
|
网络协议 视频直播 SDN
计算机网络:TCP协议的三次握手和四次挥手与UDP协议区别.
计算机网络:TCP协议的三次握手和四次挥手与UDP协议区别.
44 1