【Kafka】分区副本什么情况下会从 ISR 中剔出

简介: 【4月更文挑战第12天】【Kafka】分区副本什么情况下会从 ISR 中剔出

在 Kafka 中,ISR(In-Sync Replica)是与 Leader 副本保持数据同步的副本集合。ISR 中的副本是当前与 Leader 副本保持数据同步的副本,它们可以快速接管分区的读写请求,提高了分区的高可用性。但是,ISR 中的副本可能会因为某些情况而被剔除,例如网络延迟、副本故障或数据同步滞后等。下面将详细探讨 ISR 中副本被剔除的情况,并附上相关示例代码。

1. 副本同步滞后

当 ISR 中的某个副本与 Leader 副本的数据同步滞后时,可能会导致该副本被剔除。数据同步滞后可能由于网络延迟、副本故障或其他原因导致,导致该副本无法及时跟上 Leader 副本的数据变化。在这种情况下,Kafka 控制器可能会将该副本从 ISR 中剔除,以保证数据的一致性和可用性。

2. 副本故障或不可用

如果 ISR 中的某个副本发生故障或不可用,无法及时与 Leader 副本保持数据同步,可能会导致该副本被剔除。副本故障可能由于硬件故障、软件错误或其他原因导致,导致该副本无法继续提供服务。在这种情况下,Kafka 控制器可能会将该副本从 ISR 中剔除,并尝试将其他副本加入到 ISR 中,以保证分区的高可用性和可靠性。

3. ISR 中副本被剔除的影响

ISR 中副本被剔除会对 Kafka 集群的性能和可用性产生一定影响,具体表现如下:

  • 降低分区的高可用性: ISR 中副本被剔除会降低分区的高可用性,使得分区在面对 Leader 副本故障时无法快速切换到其他副本提供服务,可能会导致数据的延迟和请求的失败。

  • 减少数据冗余备份: ISR 中副本被剔除会减少分区的数据冗余备份,使得分区的数据容错能力下降,一旦 Leader 副本发生故障,可能会导致数据丢失或不一致。

  • 影响数据的可靠性和一致性: ISR 中副本被剔除可能会导致数据的可靠性和一致性受到影响,分区的数据可能无法及时同步到所有副本,可能会导致数据丢失或不一致。

4. ISR 中副本被剔除的处理

ISR 中副本被剔除时,Kafka 控制器会根据副本的同步状态和延迟情况动态调整 ISR 和 OSR(Out-of-Sync Replica)的成员。控制器会尝试将其他副本加入到 ISR 中,以保证分区的高可用性和可靠性。此外,管理员可以监控 ISR 中副本的状态,并根据需要进行故障处理和副本调整,以维护分区的性能和可用性。

示例代码

下面是一个简单的 Kafka 消费者示例代码,演示了如何订阅主题并消费消息:

import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.serialization.StringDeserializer;
import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

public class ConsumerExample {
   

    public static void main(String[] args) {
   
        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props.put("group.id", "my-consumer-group");
        props.put("enable.auto.commit", "true");
        props.put("auto.commit.interval.ms", "1000");
        props.put("key.deserializer", StringDeserializer.class.getName());
        props.put("value.deserializer", StringDeserializer.class.getName());

        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
        consumer.subscribe(Collections.singletonList("my-topic"));

        while (true) {
   
            ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
            for (ConsumerRecord<String, String> record : records) {
   
                System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
            }
        }
    }
}

以上示例代码创建了一个 Kafka 消费者,订阅了名为 "my-topic" 的主题,并持续消费消息。在实际生产环境中,可以根据需求监控 ISR 中副本的状态,并根据需要

相关文章
|
9天前
|
消息中间件 存储 负载均衡
【Kafka】Kafka 分区
【4月更文挑战第5天】【Kafka】Kafka 分区
|
7天前
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用合集之支持sink到多分区的kafka ,还能保持有序吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
19 0
|
9天前
|
消息中间件 存储 网络协议
Kafka 线程模型痛点攻克: 提升分区写入 2 倍性能
Apache Kafka的单分区写入性能在某些严格保序场景中至关重要,但其现有线程模型限制了性能发挥。本文分析了Kafka的串行处理模型,包括SocketServer、KafkaChannel、RequestChannel等组件,指出其通过KafkaChannel状态机确保请求顺序处理,导致处理效率低下。AutoMQ提出流水线处理模型,简化KafkaChannel状态机,实现网络解析、校验定序和持久化的阶段间并行化,提高处理效率。测试结果显示,AutoMQ的极限吞吐是Kafka的2倍,P99延迟降低至11ms。
26 3
Kafka 线程模型痛点攻克: 提升分区写入 2 倍性能
|
9天前
|
消息中间件 负载均衡 监控
【Kafka】Kafka 创建Topic后如何将分区放置到不同的 Broker 中?
【4月更文挑战第13天】【Kafka】Kafka 创建Topic后如何将分区放置到不同的 Broker 中?
|
9天前
|
消息中间件 监控 Kafka
【Kafka】分区副本中的 Leader 如果宕机但 ISR 却为空该如何处理
【4月更文挑战第12天】【Kafka】分区副本中的 Leader 如果宕机但 ISR 却为空该如何处理
|
9天前
|
消息中间件 存储 负载均衡
深度解析Kafka分区策略的精妙之处
深度解析Kafka分区策略的精妙之处
35 1
|
9天前
|
消息中间件 存储 负载均衡
【Kafka】Kafka 的分区分配策略分析
【4月更文挑战第7天】【Kafka】Kafka 的分区分配策略分析
|
9天前
|
消息中间件 监控 Kafka
【Kafka】Kafka 分区Leader选举策略
【4月更文挑战第7天】【Kafka】Kafka 分区Leader选举策略
|
9天前
|
消息中间件 存储 算法
深入了解Kafka的数据持久化机制
深入了解Kafka的数据持久化机制
52 0
|
7天前
|
消息中间件 关系型数据库 Kafka
实时计算 Flink版产品使用合集之想要加快消费 Kafka 数据的速度,该怎么配置参数
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
19 2

热门文章

最新文章