探索Python中的装饰器:提升代码可读性与复用性

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: Python中的装饰器是一种强大的工具,能够在不改变原有代码的情况下,为函数或类添加额外功能。本文将深入探讨装饰器的原理及应用,展示如何利用装饰器提升代码的可读性和复用性,从而优化Python开发过程。

在Python中,装饰器是一种函数或类,用于修改其他函数或类的功能。装饰器通过将函数或类作为参数传递给另一个函数,并返回一个新的函数或类来实现这一目的。这种技术在Python中被广泛应用于各种场景,如日志记录、性能监控、权限验证等。
首先,让我们来看一个简单的装饰器示例:
python
Copy Code
def my_decorator(func):
def wrapper():
print("Something is happening before the function is called.")
func()
print("Something is happening after the function is called.")
return wrapper

@my_decorator
def say_hello():
print("Hello!")

say_hello()
在上面的示例中,my_decorator 是一个装饰器函数,它接受一个函数作为参数,并返回一个新的函数 wrapper。当我们使用 @my_decorator 语法将装饰器应用到 say_hello 函数时,实际上相当于执行了 say_hello = my_decorator(say_hello)。调用 say_hello() 函数时,会先执行 wrapper 函数内的逻辑,然后再执行原始的 say_hello 函数。
除了简单的装饰器外,Python还支持带参数的装饰器。例如,我们可以编写一个带参数的装饰器来指定日志的级别:
python
Copy Code
def log(level):
def decorator(func):
def wrapper(args, **kwargs):
print(f"[{level}] {func.name} is called.")
return func(
args, **kwargs)
return wrapper
return decorator

@log(level='INFO')
def say_hello(name):
print(f"Hello, {name}!")

say_hello("Alice")
在这个示例中,log 是一个带参数的装饰器工厂函数,它接受一个日志级别作为参数,并返回一个装饰器函数 decorator。decorator 函数接受一个函数作为参数,并返回一个新的函数 wrapper,用于添加日志记录功能。通过使用 @log(level='INFO') 将装饰器应用到 say_hello 函数上,我们可以指定日志级别为 INFO,从而在函数调用时记录相应的日志信息。
除了函数装饰器外,Python还支持类装饰器。类装饰器是指实现了 call 方法的类,它可以像函数装饰器一样被调用。下面是一个简单的类装饰器示例:
python
Copy Code
class MyDecorator:
def init(self, func):
self.func = func

def __call__(self, *args, **kwargs):
    print("Something is happening before the function is called.")
    self.func(*args, **kwargs)
    print("Something is happening after the function is called.")

@MyDecorator
def say_hello():
print("Hello!")

say_hello()
在这个示例中,MyDecorator 类实现了 initcall 方法,其中 init 方法用于接受被装饰的函数作为参数,并将其保存在实例变量 self.func 中,而 call 方法则用于实现装饰逻辑。通过使用 @MyDecorator 将类装饰器应用到 say_hello 函数上,我们可以在函数调用前后执行额外的逻辑。
总的来说,装饰器是Python中一种非常有用的工具,它可以帮助我们在不修改原有代码的情况下,为函数或类添加额外功能。通过合理地使用装饰器,我们可以提高代码的可读性和复用性,从而优化Python开发过程。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
9天前
|
机器学习/深度学习 人工智能 PyTorch
200行python代码实现从Bigram模型到LLM
本文从零基础出发,逐步实现了一个类似GPT的Transformer模型。首先通过Bigram模型生成诗词,接着加入Positional Encoding实现位置信息编码,再引入Single Head Self-Attention机制计算token间的关系,并扩展到Multi-Head Self-Attention以增强表现力。随后添加FeedForward、Block结构、残差连接(Residual Connection)、投影(Projection)、层归一化(Layer Normalization)及Dropout等组件,最终调整超参数完成一个6层、6头、384维度的“0.0155B”模型
200行python代码实现从Bigram模型到LLM
|
9天前
|
机器学习/深度学习 算法 PyTorch
从零开始200行python代码实现LLM
本文从零开始用Python实现了一个极简但完整的大语言模型,帮助读者理解LLM的工作原理。首先通过传统方法构建了一个诗词生成器,利用字符间的概率关系递归生成文本。接着引入PyTorch框架,逐步重构代码,实现了一个真正的Bigram模型。文中详细解释了词汇表(tokenizer)、张量(Tensor)、反向传播、梯度下降等关键概念,并展示了如何用Embedding层和线性层搭建模型。最终实现了babyGPT_v1.py,一个能生成类似诗词的简单语言模型。下一篇文章将在此基础上实现自注意力机制和完整的GPT模型。
从零开始200行python代码实现LLM
|
18天前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
53 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
19天前
|
Python
|
3月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
1月前
|
数据采集 安全 BI
用Python编程基础提升工作效率
一、文件处理整明白了,少加两小时班 (敲暖气管子)领导让整理100个Excel表?手都干抽筋儿了?Python就跟铲雪车似的,哗哗给你整利索!
64 11
|
3月前
|
人工智能 Java 数据安全/隐私保护
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
115 28
|
3月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
3月前
|
Python
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
58 4
|
3月前
|
设计模式 机器学习/深度学习 前端开发
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。

热门文章

最新文章

推荐镜像

更多