算法系列--动态规划--背包问题(5)--二维费用背包问题(下)

简介: 算法系列--动态规划--背包问题(5)--二维费用背包问题(下)

算法系列--动态规划--背包问题(5)--二维费用背包问题(上)

https://developer.aliyun.com/article/1480864?spm=a2c6h.13148508.setting.14.5f4e4f0e82l87T

💕"要平安无事地活下去."💕

作者:Lvzi

文章主要内容:算法系列–动态规划–背包问题(5)–二维费用背包问题

大家好,今天为大家带来的是算法系列--动态规划--背包问题(5)--二维费用背包问题

二.盈利计划

链接:

https://leetcode.cn/problems/profitable-schemes/description/

分析:

本题有两个限制条件:

  1. 总人数不能超过n
  2. 总价格必须 >= minProfit

同样的也是一个二维费用的背包问题,分析思路同上,需要注意的是这里要求的是一共有多少种情况数,所以注意不选也是一种情况

状态表示:

  • dp[i][j][k]:在前i个物品中选择,总人数不超过j,总利润至少为k,一共有多少种选法

状态转移方程:

注意这里的总利润是至少为k,不是最多,k-p[i]可以小于0,如果小于0,就代表p[i]>k,也就是只要完成第i个任务就可以达到最小的利润,之前的所有任务我不选都行,但是在数组中下标不能为负数,所以当k-p[i] < 0时,应该直接当做总利润至少0的情况

代码:

class Solution {
    public int profitableSchemes(int n, int minProfit, int[] group, int[] profit) {
        int len = group.length, MOD = (int)1e9 + 7;// MOD是为了防止数据过大造成越界
        int[][][] dp = new int[len + 1][n + 1][minProfit + 1];
        for(int j = 0 ; j <= n; j++) dp[0][j][0] = 1;
        for(int i = 1; i <= len; i++) {
            for(int j = 0; j <= n; j ++) {
                for(int k = 0; k <= minProfit; k++) {
                    dp[i][j][k] = dp[i - 1][j][k];
                    if(j >= group[i - 1])
                        dp[i][j][k] += dp[i - 1][j - group[i - 1]][Math.max(0, k - profit[i - 1])];
                    dp[i][j][k] %= MOD;// 防止越界
                }
            }
        }
        return dp[len][n][minProfit];
    }
}

空间优化代码:

class Solution {
    public int profitableSchemes(int n, int minProfit, int[] group, int[] profit) {
        int len = group.length, MOD = (int)1e9 + 7;// MOD是为了防止数据过大造成越界
        int[][] dp = new int[n + 1][minProfit + 1];
        for(int j = 0 ; j <= n; j++) dp[j][0] = 1;
        for(int i = 1; i <= len; i++) {
            for(int j = n; j >= group[i - 1]; j--) {
                for(int k = minProfit; k >= 0; k--) {
                    dp[j][k] += dp[j - group[i - 1]][Math.max(0, k - profit[i - 1])];
                    dp[j][k] %= MOD;// 防止越界
                }
            }
        }
        return dp[n][minProfit];
    }
}

总结:

  • 二维费用的背包问题其实多一维的背包问题,区别就在于dp表是一个三维的dp表,但是思路和普通的背包问题类似,遵循相同的状态表示,状态转移方程,填表顺序,以及空间优化
  • 二位费用背包问题相较于普通的背包问题更加灵活,比如第二个题目中不再是不超过xxxx,而是至少实现最低利润


目录
相关文章
|
21天前
|
机器学习/深度学习 存储 算法
动态规划算法深度解析:0-1背包问题
0-1背包问题是经典的组合优化问题,目标是在给定物品重量和价值及背包容量限制下,选取物品使得总价值最大化且每个物品仅能被选一次。该问题通常采用动态规划方法解决,通过构建二维状态表dp[i][j]记录前i个物品在容量j时的最大价值,利用状态转移方程避免重复计算子问题,从而高效求解最优解。
244 1
|
21天前
|
算法 搜索推荐 Java
贪心算法:部分背包问题深度解析
该Java代码基于贪心算法求解分数背包问题,通过按单位价值降序排序,优先装入高价值物品,并支持部分装入。核心包括冒泡排序优化、分阶段装入策略及精度控制,体现贪心选择性质,适用于可分割资源的最优化场景。
150 1
贪心算法:部分背包问题深度解析
|
8月前
|
存储 算法 Java
算法系列之动态规划
动态规划(Dynamic Programming,简称DP)是一种用于解决复杂问题的算法设计技术。它通过将问题分解为更小的子问题,并存储这些子问题的解来避免重复计算,从而提高算法的效率。
269 4
算法系列之动态规划
|
9月前
|
算法 Java C++
【潜意识Java】蓝桥杯算法有关的动态规划求解背包问题
本文介绍了经典的0/1背包问题及其动态规划解法。
225 5
|
8月前
|
算法 安全 调度
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
|
8月前
|
机器学习/深度学习 算法 测试技术
【动态规划篇】01 背包的逆袭:如何用算法装满你的 “财富背包”
【动态规划篇】01 背包的逆袭:如何用算法装满你的 “财富背包”
|
13天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
16天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
103 1
|
14天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
13天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
111 14

热门文章

最新文章