算法系列--动态规划--子序列(2)(上)

简介: 算法系列--动态规划--子序列(2)

💕"你可以说我贱,但你不能说我的爱贱。"💕

作者:Mylvzi

文章主要内容:算法系列–动态规划–子序列(2)

今天带来的是算法系列--动态规划--子序列(2),包含了关于子序列问题中较难的几道题目(尤其是通过二维状态表示来推导状态转移方程)

1.最⻓定差⼦序列

链接:

https://leetcode.cn/problems/longest-arithmetic-subsequence-of-given-difference/description/

分析:

  • 状态表示:dp[i]:以i为结尾的,最长的定差子序列的长度
  • 状态转移方程:if(hash.contains(a - difference)) dp[i] = dp[k] + 1
  • 优化:由于要寻找a-difference与其对应的下标k,所以我们可以利用一个哈希表来建立数值与下标之间的映射关系

代码:

class Solution {
    public int longestSubsequence(int[] arr, int difference) {
        Map<Integer,Integer> hash = new HashMap<>();
        int ret = 1;// 记录最值
        for(int a : arr) {
            hash.put(a,hash.getOrDefault(a-difference, 0 ) + 1);// 将当前位置插入到哈希表中
            ret = Math.max(ret,hash.get(a));// 更新最值
        }
        return ret;
    }
}

2.最⻓的斐波那契⼦序列的⻓度

链接:

https://leetcode.cn/problems/length-of-longest-fibonacci-subsequence/

分析:

代码:

class Solution {
    public int lenLongestFibSubseq(int[] nums) {
        int n = nums.length;
        int[][] dp = new int[n][n];
        // 初始化为2
        for(int i = 0; i < n; i++) {
            for(int j = 0; j < n; j++) dp[i][j] = 2;
        }
        Map<Integer,Integer> hash = new HashMap<>();
        for(int i = 0; i < n; i++) hash.put(nums[i], i);// 将数组中的值和下标存入到哈希表之中
        hash.put(nums[0],0);
        int ret = 2;
        // 填表
        for(int j = 1; j < n; j++) {
            for(int i = 0; i < j; i++) {
                int a = nums[j] - nums[i];// 得到前一个位置的数
                if(a < nums[i] && hash.containsKey(a)) {//必须包含 且下标在i之前
                    dp[i][j] = dp[hash.get(a)][i] + 1;// 更新
                }
                ret = Math.max(ret,dp[i][j]);// 更新最值
            }
        }
        return ret < 3 ? 0 : ret;// 处理极端情况(无fib数列)
    }
}

算法系列--动态规划--子序列(2)(下)https://developer.aliyun.com/article/1480801?spm=a2c6h.13148508.setting.28.361f4f0eyTL4lb


目录
相关文章
|
3月前
|
存储 算法
深入了解动态规划算法
深入了解动态规划算法
85 1
|
3月前
|
算法 测试技术 C++
【动态规划算法】蓝桥杯填充问题(C/C++)
【动态规划算法】蓝桥杯填充问题(C/C++)
|
2月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
65 2
|
3月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
119 2
动态规划算法学习三:0-1背包问题
|
3月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
85 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
3月前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
196 0
动态规划算法学习二:最长公共子序列
|
3月前
|
存储 人工智能 算法
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
|
3月前
|
存储 算法
动态规划算法学习一:DP的重要知识点、矩阵连乘算法
这篇文章是关于动态规划算法中矩阵连乘问题的详解,包括问题描述、最优子结构、重叠子问题、递归方法、备忘录方法和动态规划算法设计的步骤。
194 0
|
3月前
|
算法 C++
【算法解题思想】动态规划+深度优先搜索(C/C++)
【算法解题思想】动态规划+深度优先搜索(C/C++)
|
5月前
|
机器学习/深度学习 算法 Java
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
这篇文章介绍了基于贪婪技术思想的Prim算法和Dijkstra算法,包括它们的伪代码描述、Java源代码实现、时间效率分析,并展示了算法的测试用例结果,使读者对贪婪技术及其应用有了更深入的理解。
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法

热门文章

最新文章