涉及知识点
图论 并集查找
LeetCode928. 尽量减少恶意软件的传播 II
给定一个由 n 个节点组成的网络,用 n x n 个邻接矩阵 graph 表示。在节点网络中,只有当 graph[i][j] = 1 时,节点 i 能够直接连接到另一个节点 j。
一些节点 initial 最初被恶意软件感染。只要两个节点直接连接,且其中至少一个节点受到恶意软件的感染,那么两个节点都将被恶意软件感染。这种恶意软件的传播将继续,直到没有更多的节点可以被这种方式感染。
假设 M(initial) 是在恶意软件停止传播之后,整个网络中感染恶意软件的最终节点数。
我们可以从 initial 中删除一个节点,并完全移除该节点以及从该节点到任何其他节点的任何连接。
请返回移除后能够使 M(initial) 最小化的节点。如果有多个节点满足条件,返回索引 最小的节点 。
示例 1:
输入:graph = [[1,1,0],[1,1,0],[0,0,1]], initial = [0,1]
输出:0
示例 2:
输入:graph = [[1,1,0],[1,1,1],[0,1,1]], initial = [0,1]
输出:1
示例 3:
输入:graph = [[1,1,0,0],[1,1,1,0],[0,1,1,1],[0,0,1,1]], initial = [0,1]
输出:1
提示:
n == graph.length
n == graph[i].length
2 <= n <= 300
graph[i][j] 是 0 或 1.
graph[i][j] == graph[j][i]
graph[i][i] == 1
1 <= initial.length < n
0 <= initial[i] <= n - 1
initial 中每个整数都不同
并集查找
一,将非初始节点连接,行程若干连通区域。
二,计算各连通区域和几个初始节点直接相连。 直接相连:连通区域的某点有边和初始节点相连。间接相连:连通区域的某点通过某初始节点连接另外一个初始节点。
间接相连的初始节点不限,因为删除直接相连的节点后,间接相连的节点也断开了。
sum=有和初始节点连接的区域的节点总数量。
maxSub = M a x n : i n i t i a l Max\Large_{n:initial}Maxn:initial(只和n相连的区域的节点数量)
注意:
一, 一个初始节点可能和一个区域连接多次。
二,删除任何初始节点都不会影响感染数量,返回最小的初始节点,而不是0。
代码
核心代码
class CUnionFind { public: CUnionFind(int iSize) :m_vNodeToRegion(iSize) { for (int i = 0; i < iSize; i++) { m_vNodeToRegion[i] = i; } m_iConnetRegionCount = iSize; } int GetConnectRegionIndex(int iNode) { int& iConnectNO = m_vNodeToRegion[iNode]; if (iNode == iConnectNO) { return iNode; } return iConnectNO = GetConnectRegionIndex(iConnectNO); } void Union(int iNode1, int iNode2) { const int iConnectNO1 = GetConnectRegionIndex(iNode1); const int iConnectNO2 = GetConnectRegionIndex(iNode2); if (iConnectNO1 == iConnectNO2) { return; } m_iConnetRegionCount--; if (iConnectNO1 > iConnectNO2) { UnionConnect(iConnectNO1, iConnectNO2); } else { UnionConnect(iConnectNO2, iConnectNO1); } } bool IsConnect(int iNode1, int iNode2) { return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2); } int GetConnetRegionCount()const { return m_iConnetRegionCount; } vector<int> GetNodeCountOfRegion()//各联通区域的节点数量 { const int iNodeSize = m_vNodeToRegion.size(); vector<int> vRet(iNodeSize); for (int i = 0; i < iNodeSize; i++) { vRet[GetConnectRegionIndex(i)]++; } return vRet; } std::unordered_map<int, vector<int>> GetNodeOfRegion() { std::unordered_map<int, vector<int>> ret; const int iNodeSize = m_vNodeToRegion.size(); for (int i = 0; i < iNodeSize; i++) { ret[GetConnectRegionIndex(i)].emplace_back(i); } return ret; } private: void UnionConnect(int iFrom, int iTo) { m_vNodeToRegion[iFrom] = iTo; } vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引 int m_iConnetRegionCount; }; class Solution { public: int minMalwareSpread(vector<vector<int>>& graph, vector<int>& initial) { m_c = graph.size(); set<int> setInit(initial.begin(), initial.end()); CUnionFind uf(m_c); for (int i = 0; i < m_c; i++) { if (setInit.count(i)) { continue; } for (int j = i + 1; j < m_c; j++) { if (setInit.count(j)) { continue; } if (graph[i][j]) { uf.Union(i, j); } } } unordered_map<int, int> mRegionInit; for (int i = 0; i < m_c; i++) { if (!setInit.count(i)) { continue; } for (int j = 0; j < m_c; j++) { if (setInit.count(j)) { continue; } if (!graph[i][j]) { continue; } const int region = uf.GetConnectRegionIndex(j); if (mRegionInit.count(region) && (mRegionInit[region] != i )) {//新旧初始节点必须不同 mRegionInit[region] = -1; } else { mRegionInit[region] = i; } } } map<int, int> mSub; auto m = uf.GetNodeOfRegion(); for (const auto& [region, init] : mRegionInit) { if (-1 != init) { mSub[init] += m[region].size(); } } int index = -1; int iMax = 0; for (const auto& [tmp, cnt] : mSub) { if (cnt > iMax) { iMax = cnt; index = tmp; } } return (-1 == index) ? *setInit.begin() : index; } int m_c; };
测试用例
template<class T,class T2> void Assert(const T& t1, const T2& t2) { assert(t1 == t2); } template<class T> void Assert(const vector<T>& v1, const vector<T>& v2) { if (v1.size() != v2.size()) { assert(false); return; } for (int i = 0; i < v1.size(); i++) { Assert(v1[i], v2[i]); } } int main() { vector<vector<int>> graph; vector<int> initial; { Solution sln; graph = { {1,1,0},{1,1,0},{0,0,1} }, initial = { 0,1 }; auto res = sln.minMalwareSpread(graph, initial); Assert(0, res); } { Solution sln; graph = { {1,1,0},{1,1,1},{0,1,1} }, initial = { 0,1 }; auto res = sln.minMalwareSpread(graph, initial); Assert(1, res); } { Solution sln; graph = { {1,1,0,0},{1,1,1,0},{0,1,1,1},{0,0,1,1} }, initial = { 0,1 }; auto res = sln.minMalwareSpread(graph, initial); Assert(1, res); } { Solution sln; graph = { {1,0,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0,0},{0,0,1,0,1,0,1,0,0},{0,0,0,1,0,0,0,0,0},{0,0,1,0,1,0,0,0,0},{0,0,0,0,0,1,0,0,0},{0,0,1,0,0,0,1,0,0},{0,0,0,0,0,0,0,1,0},{0,0,0,0,0,0,0,0,1} }, initial = { 6,0,4 }; auto res = sln.minMalwareSpread(graph, initial); Assert(0, res); } { Solution sln; graph = { {1,0,0,0,0,0,0,0,1},{0,1,0,1,0,0,0,0,0},{0,0,1,1,0,1,0,0,0},{0,1,1,1,1,0,1,0,0},{0,0,0,1,1,1,0,0,0},{0,0,1,0,1,1,0,0,0},{0,0,0,1,0,0,1,1,0},{0,0,0,0,0,0,1,1,1},{1,0,0,0,0,0,0,1,1} }, initial = { 3,7 }; auto res = sln.minMalwareSpread(graph, initial); Assert(3, res); } { Solution sln; graph ={ {1,0,0,0,0,1,0},{0,1,1,0,0,0,0},{0,1,1,0,0,0,0},{0,0,0,1,0,0,0},{0,0,0,0,1,0,0},{1,0,0,0,0,1,0},{0,0,0,0,0,0,1} }, initial = { 4 }; auto res = sln.minMalwareSpread(graph, initial); Assert(4, res); } }
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
我想对大家说的话 |
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。