利用前缀和计算二维矩阵子矩阵的和

简介: 利用前缀和计算二维矩阵子矩阵的和

利用前缀和计算二维矩阵子矩阵的和


二维矩阵在计算机科学中具有重要的地位,它们广泛用于图形处理、数据处理以及算法设计等领域。在处理二维矩阵时,经常需要计算子矩阵的和。例如,给定一个 n * n 的矩阵,我们可能需要计算其中所有i * i子矩阵的和。


解决方案


为了高效地计算子矩阵的和,可以利用前缀和技术。通过预处理得到一个与原矩阵相同大小的二维数组,用于存储矩阵中每个位置左上角子矩阵的和。然后,利用前缀和数组可以在常数时间内计算任意子矩阵的和。


前缀和公式原理

prefixSum[i][j]=prefixSum[i−1][j]+prefixSum[i][j−1]−prefixSum[i−1][j−1]+a[i][j]


示例代码


下面是利用前缀和技术计算二维矩阵子矩阵和的示例代码:

#include <iostream>
using namespace std;

const int N = 4; // 矩阵的大小
int a[N + 1][N + 1] = {
    {0, 0, 0, 0, 0}, // 增加一行一列用于边界处理
    {0, 1, 0, 1, 0},
    {0, 0, 1, 0, 1},
    {0, 1, 0, 1, 0},
    {0, 0, 1, 0, 1}
};

int main() {
    // 计算前缀和
    int prefixSum[N + 1][N + 1];
    for (int i = 1; i <= N; ++i) {
        for (int j = 1; j <= N; ++j) {
            prefixSum[i][j] = prefixSum[i - 1][j] + prefixSum[i][j - 1] - prefixSum[i - 1][j - 1] + a[i][j];
        }
    }

    // 遍历所有可能的 i x i 子矩阵
    for (int i = 1; i <= N; ++i) {
        for (int x1 = 1; x1 <= N - i + 1; ++x1) {
            for (int y1 = 1; y1 <= N - i + 1; ++y1) {
                int x2 = x1 + i - 1;
                int y2 = y1 + i - 1;
                // 计算子矩阵的和
                int sum = prefixSum[x2][y2] - prefixSum[x2][y1 - 1] - prefixSum[x1 - 1][y2] + prefixSum[x1 - 1][y1 - 1];
                cout << "以 (" << x1 << ", " << y1 << ") 为左上角," << i << "x" << i << " 子矩阵的和为: " << sum << endl;
            }
        }
    }

    return 0;
}


运行结果:

以 (1, 1) 为左上角,1x1 子矩阵的和为: 1
以 (1, 2) 为左上角,1x1 子矩阵的和为: 0
以 (1, 3) 为左上角,1x1 子矩阵的和为: 1
以 (1, 4) 为左上角,1x1 子矩阵的和为: 0
以 (2, 1) 为左上角,1x1 子矩阵的和为: 0
以 (2, 2) 为左上角,1x1 子矩阵的和为: 1
以 (2, 3) 为左上角,1x1 子矩阵的和为: 0
以 (2, 4) 为左上角,1x1 子矩阵的和为: 1
以 (3, 1) 为左上角,1x1 子矩阵的和为: 1
以 (3, 2) 为左上角,1x1 子矩阵的和为: 0
以 (3, 3) 为左上角,1x1 子矩阵的和为: 1
以 (3, 4) 为左上角,1x1 子矩阵的和为: 0
以 (4, 1) 为左上角,1x1 子矩阵的和为: 0
以 (4, 2) 为左上角,1x1 子矩阵的和为: 1
以 (4, 3) 为左上角,1x1 子矩阵的和为: 0
以 (4, 4) 为左上角,1x1 子矩阵的和为: 1
以 (1, 1) 为左上角,2x2 子矩阵的和为: 2
以 (1, 2) 为左上角,2x2 子矩阵的和为: 2
以 (1, 3) 为左上角,2x2 子矩阵的和为: 2
以 (2, 1) 为左上角,2x2 子矩阵的和为: 2
以 (2, 2) 为左上角,2x2 子矩阵的和为: 2
以 (2, 3) 为左上角,2x2 子矩阵的和为: 2
以 (3, 1) 为左上角,2x2 子矩阵的和为: 2
以 (3, 2) 为左上角,2x2 子矩阵的和为: 2
以 (3, 3) 为左上角,2x2 子矩阵的和为: 2
以 (1, 1) 为左上角,3x3 子矩阵的和为: 5
以 (1, 2) 为左上角,3x3 子矩阵的和为: 4
以 (2, 1) 为左上角,3x3 子矩阵的和为: 4
以 (2, 2) 为左上角,3x3 子矩阵的和为: 5
以 (1, 1) 为左上角,4x4 子矩阵的和为: 8
相关文章
|
4月前
|
存储 算法 Python
稀疏矩阵是矩阵中大部分元素为零的矩阵。
稀疏矩阵是矩阵中大部分元素为零的矩阵。
|
5月前
二维前缀和
二维前缀和
15 0
|
6月前
|
存储 人工智能 算法
二维差分与二维前缀和
二维差分与二维前缀和
56 3
|
6月前
|
索引
转置矩阵-暴力解法&一行代码
转置矩阵-暴力解法&一行代码
37 0
|
6月前
子矩阵的和
子矩阵的和
42 0
|
算法 测试技术 C#
C++前缀和算法:构造乘积矩阵
C++前缀和算法:构造乘积矩阵
第3章 数组与矩阵——3.3 矩阵元素的运算(1)
第3章 数组与矩阵——3.3 矩阵元素的运算(1)
|
人工智能 vr&ar
一维 二维求前缀和、差分
一维 二维求前缀和、差分
50 0
(二维前缀和模板)796. 子矩阵的和
(二维前缀和模板)796. 子矩阵的和
65 0
|
人工智能 Java 算法框架/工具
二维前缀和数组&二维差分数组
二维差分数组div中的每一个格子记录的是「以当前位置为区域的左上角(区域右下角恒定为原数组的右下角)的值的变化量」【应该不固定 可以倒转】
347 0
二维前缀和数组&二维差分数组