从零开始做逆变器系列 ( 二 ): 单极性、双极性、单极性倍频SPWM

简介: 从零开始做逆变器系列 ( 二 ): 单极性、双极性、单极性倍频SPWM

[ 序 言 ]

  接上文我们了解了逆变器的工作原理,下面来细化的介绍一下几种不同的SPWM调制方式,后文再使用Matlab做仿真,仿真中没有SPWM模块可以直接使用,我们可以使用三角波作为载波和50Hz频率的正弦波进行比较生成SPWM输入到H桥电路中,好了,正文开始。

[ 仿 真 中 SPWM 的 生 成 ]

   仿真中我们使用载波频率为20KHz,正弦波的频率就用我们国内市电的频率50Hz,比较两个波形的交点进而生成SPWM,仿真结果如下:

放大了来看是这样的:

   下面的方波就是SPWM了。

[ SPWM 的 分 类 ]

  上面的仿真已经验证了SPWM的仿真可行性了,但是SPWM还分为三种不同的方式,单极性SPWM双极性SPWM单极性倍频SPWM

   那我们上面仿真使用的是哪种呢?这三种方式又有什么区别呢?下面我们来逐一探讨下。

[ 双 极 性 SPWM ]

     上文我们说到了H桥电路,我们再来看下双极性SPWM下对应的四个管子分别是什么状态。

   双极性的SPWM通俗的来说就G1和G2的PWM互补,且G1和G3互补,即G1和G4的驱动信号相同,G2和G3的驱动信号相同且是和G1G4相反的,我们使用MCU控制的时候可以把G1和G4连在一起接到PWM上,G2和G3连在一起接到其互补通道上。

       此时负载R的电压变化是直接从+Udc变换到-Udc,变化幅度很大。而我们在布线的时候难免会有分布电容的存在,此时Δdu/Δdt就会有电流产生作用在管子上,容易导致管子损坏。

      优点:

       1、代码简单

       2、控制逻辑清晰明了

      缺点:

       1、管子一直在载波频率下开关,开关损耗大,发热严重,寿命短

       2、效率低

       3、谐波含量高

[ 单 极 性 SPWM ]    单极性SPWM对应的4个管子的开关状态是怎样的呢?从图上我们就能看出来,在调制波的正半周期输出是+Udc,在调制波的负半周期输出的是-Udc,H桥输出端的电压变化是从+Udc到0,再从0到-Udc,变化幅度相对于双极性来说缩小了一半。
    调制波的正半周期:            G3关断,G4导通,此时给G1和G2输入互补的SPWM,输出0~+Udc    调制波的负半周期:

           G1关断,G2导通,此时给G3和G4输入互补的SPWM,输出-Udc~0

   因此在整个调制波的周期内总有一对管子是不做高频切换的,以调制波的频率切换的,所以开关损耗降低了,进而MOS的发热也会降低。

      优点:
       1、开关管的开关频率降低了,开关损耗也会降低
       2、相比于双极性SPWM,H桥的输出电压变化范围缩小一半
 

[ 单 极 性 倍 频 SPWM ]

   单极性倍频和双极性有点类似,载波是一样的,只不过还加入了一个相位相差180度的调制波形和载波相比,把输出的结果同步作用到H桥上。
     小编起初在看到单极性倍频时没弄明白倍频在哪?是怎么作用在开关管上的,奈何我所看到的文章、视频最多是画了如下图所示的图示,压根没说倍频在哪,和双极性有什么区别,当时就好想有个大佬的大腿可以抱一下迅速跟我说一下,我就能快速的吸收这个知识点,现在我就来讲清楚这些疑问。(创作真的不易,每个图都是小编手画的)

怎么理解倍频?倍频在什么地方?有两种方式理解:

1、从调制波的波形来看,单极性的调制方式完成正负半轴的周期是2p,而单极性倍频是p,周期缩短一半,频率增加一倍。
2、从H桥输出的波形来看,当载波和相位为0和180°的正弦波比较时,会分别产生上图示波形,两个波形分别作用到H桥的两个桥臂上时,H桥的输出的波形就是两个波形的差,即图1的波形减去图2的波形等于图3的波形,从输出的波形上来看,在同一个周期内,开关次数是桥臂PWM的2倍,因此倍频在这里,当桥臂输入10KHz的SPWM时,H桥就能输出20KHz的频率。再看下面这张图就更明了了。

      优点:

       1、在相同的载波频率下能输出更高的频率,使得后级的LC电路中的电感可以更小,因此体积也会更小,成本更低。
         2、输出的高频谐波含量也会更少


[ 结 语 ]

   本篇文章主要介绍了三种SPWM的分类及其输出的波形和优缺点,下面我在仿真中实现这三种波形,并观测其THD。

相关文章
|
安全 C语言
snprintf的用法
简要介绍了snprintf的常用方法,能大大的简化我们的代码
开源! ! ! 轻量级多功能按键驱动-LiteButton
开源! ! ! 轻量级多功能按键驱动-LiteButton
交流电路理论:峰值、平均值和RMS值的计算公式
除了频率和周期之外,AC 波形的一个关键属性是振幅,它表示交变波形的最大值,或者更广为人知的是峰值。
11855 1
交流电路理论:峰值、平均值和RMS值的计算公式
|
新能源
从零开始做逆变器系列文章之逆变原理
从零开始做逆变器系列文章之逆变原理
从零开始做逆变器系列文章之逆变原理
载波相移CPS-SPWM调制方法的simulink建模与仿真
本课题研究载波相移CPS-SPWM调制方法的Simulink建模与仿真。CPS-SPWM通过在多个功率单元中引入载波相移,使开关动作错开,输出多电平PWM波形,接近理想正弦波。系统采用单极倍频调制波反相法,生成互补脉冲序列控制开关管通断。双极性CPS-PWM的电压电平数为n+1,基波分量是单个双极性PWM的N倍。仿真结果验证了该方法的有效性,核心程序基于MATLAB2022a实现。
基于级联H桥的多电平逆变器PWM控制策略的simulink建模与仿真
级联H桥(CHB)多电平逆变器通过多个H桥单元级联实现高电压和高质量输出波形,广泛应用于风力发电、光伏并网等高压大功率领域。每个H桥包含两个开关管,级联后输出电压电平数为2N+1,采用空间矢量脉宽调制(SVPWM)控制策略,通过合理切换开关器件生成所需的正弦波形。系统仿真基于MATLAB2022a。
|
11月前
|
算法
基于双闭环PI的SVPWM控制器simulink建模与仿真
本课题基于双闭环PI的SVPWM控制器,在MATLAB2022a中构建Simulink模型,涵盖DA转换、abc-dq变换、Clark变换、PI控制器及SVPWM模块。该控制器利用SVPWM技术提高电压利用率并减少谐波,通过双闭环PI算法精准控制电机转速与电流。仿真结果显示该系统具有优异的控制性能。
|
11月前
|
算法 流计算
基于MPPT的太阳能光伏电池simulink性能仿真,对比扰动观察法,增量电导法,恒定电压法
本课题在Simulink中实现基于MPPT的太阳能光伏电池,并对比了扰动观察法、增量电导法和恒定电压法三种MPPT方法。通过系统仿真,展示了不同算法下的性能差异。使用MATLAB 2022a版本进行建模和仿真。MPPT技术通过实时调整光伏系统的工作点,使其始终工作在最大功率点附近,从而最大化输出功率。扰动观察法、增量电导法和恒定电压法分别通过不同的机制实现这一目标。
【Simulink】单相电压型全桥逆变电路仿真基础实验(方波信号)
【Simulink】单相电压型全桥逆变电路仿真基础实验(方波信号)
1788 0
基于6个IGBT的全桥电路simulink建模与仿真
该文主要介绍了基于6个IGBT的全桥电路在MATLAB2022a中的Simulink建模与仿真。文中展示了系统仿真结果的多张图片,并简述了三相全桥逆变器的工作原理,包括电路结构和控制IGBT开关状态的方法。全桥电路应用于变频驱动、逆变器、电动汽车和可再生能源领域,实现高效能量转换和精确控制。通过PWM调制,可适应不同应用需求。

热门文章

最新文章