python并发编程: Python使用线程池在Web服务中实现加速

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
大数据开发治理平台 DataWorks,不限时长
简介: python并发编程: Python使用线程池在Web服务中实现加速

往期文章:

  1. 并发编程简介
  2. 怎样选择多线程多进程多协程
  3. Python速度慢的罪魁祸首,全局解释器锁GIL
  4. 使用多线程,Python爬虫被加速10倍
  5. Python实现生产者消费者爬虫
  6. Python线程安全问题以及解决方案
  7. Python好用的线程池ThreadPoolExecutor

web服务的架构以及特点

web后台服务的特点:

  • web服务对响应时间要求非常高,比如要求200ms返回
  • web服务有大量的依赖IO操作的调用,比如磁盘文件、数据库、远程API
  • web服务经常需要处理几万人、几百万人的同时请求

使用线程池ThreadPoolExecutor加速

使用线程池ThreadPoolExecutor的好处:

  • 方便的将磁盘文件、数据库、远程API的IO调用并发执行
  • 线程池的线程数目不会无限创建(导致系统挂掉),具有防御功能

代码用FastAPI实现Web服务并实现加速

不使用进程池方式

from fastapi import FastAPI
import time

app = FastAPI()

def read_file():
    time.sleep(0.1)
    return "result_file"

def read_db():
    time.sleep(0.2)
    return "read_db"

def read_api():
    time.sleep(0.3)
    return "read_api"

@app.get("/")
def index():
    return {
   
   
        "result_file":read_file(),
        "read_db":read_db(),
        "read_api":read_api()
        }


if __name__  == "__main__":
    import uvicorn
    uvicorn.run(app)

运行结果如下:

使用进程池方式

from fastapi import FastAPI
import time
from concurrent.futures import ThreadPoolExecutor


app = FastAPI()
pool = ThreadPoolExecutor()

def read_file():
    time.sleep(0.1)
    return "result_file"

def read_db():
    time.sleep(0.2)
    return "read_db"

def read_api():
    time.sleep(0.3)
    return "read_api"

@app.get("/")
def index():
    result_file  = pool.submit(read_file)
    result_db  = pool.submit(read_db)
    result_api  = pool.submit(read_api)
    return {
   
   
        "result_file":result_file.result(),
        "read_db":result_db.result(),
        "read_api":result_api.result()
        }


if __name__  == "__main__":
    import uvicorn
    uvicorn.run(app)

运行结果如下:

目录
相关文章
|
3天前
|
XML 监控 数据格式
第六十六章 使用 Web 服务监控 IRIS - IRIS 对 WS-Monitoring 的支持概述
第六十六章 使用 Web 服务监控 IRIS - IRIS 对 WS-Monitoring 的支持概述
10 0
|
2天前
|
并行计算 Python
Python并发编程与多线程
Python编程中,多线程和并发编程是优化复杂任务执行的关键。借助标准库中的`threading`模块,可实现多线程,如示例所示,创建线程并执行函数。然而,由于全局解释器锁(GIL),多线程在CPU密集型任务中并不高效。对于I/O密集型任务,多线程仍能提高效率。为充分利用多核,可采用多进程(如`multiprocessing`模块)或异步编程。选择技术时需依据任务类型和性能需求。
|
2天前
|
应用服务中间件 数据库 nginx
Python Web开发实战:从搭建博客到部署上线
使用Python和Flask初学者指南:从搭建简单博客到部署上线。文章详细介绍了如何从零开始创建一个博客系统,包括准备Python环境、使用Flask和SQLite构建应用、设计数据库模型、创建视图函数和HTML模板,以及整合所有组件。最后,简述了如何通过Gunicorn和Nginx将应用部署到Linux服务器。
|
2天前
|
消息中间件 安全 调度
基于Python的性能优化(线程、协程、进程)
一、多线程 在CPU不密集、IO密集的任务下,多线程可以一定程度的提升运行效率。
|
3天前
|
监控 网络架构 Windows
第六十八章 使用 Web 服务监控 IRIS - 监控网络客户端
第六十八章 使用 Web 服务监控 IRIS - 监控网络客户端
6 0
|
3天前
|
监控 数据库
第六十七章 使用 Web 服务监控 IRIS - 监控 Web 服务的 URL
第六十七章 使用 Web 服务监控 IRIS - 监控 Web 服务的 URL
9 0
|
4天前
|
缓存 应用服务中间件 数据库
Python Web Service开发及优化
随着互联网的快速发展,Web服务已成为现代技术的核心。Python作为一种功能强大且易于学习的编程语言,在Web服务开发领域占据着重要地位。Python Web服务开发的重要性在于它能够提供高效、可扩展且易于维护的解决方案。本篇博客将探讨如何使用Python的Flask框架、Gunicorn WSGI服务器和Nginx网页服务器来实现高性能的Web服务。
|
4天前
|
监控 数据可视化 Java
Python中的线程池与进程池
【5月更文挑战第19天】本文探讨Python中提高程序性能的关键——线程池和进程池。线程池与进程池是并行编程工具,有效利用多核处理器,加速程序执行。线程是运算调度单位,进程是资源分配和调度基础。线程池与进程池管理线程和进程,减少创建销毁开销。
14 0
|
5天前
|
Java API 数据库
利用Java构建高性能的RESTful Web服务
在现代软件开发中,RESTful Web服务已成为一种流行的架构模式,用于构建可扩展、可维护的网络应用。本文将探讨如何使用Java编程语言及其相关框架(如Spring Boot)来构建高性能的RESTful Web服务。我们将不仅仅关注基本的RESTful API设计,还将深入讨论性能优化、安全性、以及服务扩展性等方面的技术细节。通过本文,读者将能够掌握构建高效RESTful Web服务的核心技术和实践。
|
5天前
|
网络协议 数据格式 Python
Python进阶---HTTP协议和Web服务器
Python进阶---HTTP协议和Web服务器
18 4