雷达模糊函数及MATLAB仿真(二)

简介: 雷达模糊函数及MATLAB仿真

雷达模糊函数及MATLAB仿真(一)https://developer.aliyun.com/article/1472371


②、仿真结果

1)上调频 LFM 信号三维不确定图

脉宽 1s,带宽 10Hz

2)上调频 LFM 信号不确定函数等高线图

3)上调频 LFM 信号三维模糊度图

脉宽 1s,带宽 10Hz

4)上调频 LFM 信号模糊函数等高线图

4、LFM 沿时间延迟轴 τ \tauτ 的切面

上调频模糊函数沿时间延迟轴 τ \tauτ 的切面为:

①、MATLAB 源码

close all
clear all
taup = 1;
b =20.;
up_down = 1.;
taux = -1.5*taup:.01:1.5*taup;
fd = 0.;
mu = up_down * b / 2. / taup;
ii = 0.;
for tau = -1.5*taup:.01:1.5*taup
   ii = ii + 1;
   val1 = 1. - abs(tau) / taup;
   val2 = pi * taup * (1.0 - abs(tau) / taup);
   val3 = (fd + mu * tau);
   val = val2 * val3;
   x(ii) = abs( val1 * (sin(val+eps)/(val+eps)));
end
figure(1)
plot(taux,x)
grid
xlabel ('Delay - seconds')
ylabel ('Uncertainty')
figure(2)
plot(taux,x.^2)
grid
xlabel ('Delay - seconds')
ylabel ('Ambiguity')

②、仿真结果

1)不确定函数切面图

LFM 脉冲(τ ′ = 1 , b = 20 \tau'=1,b=20τ=1,b=20)的零多普勒不确定函数

注意到 LFM 信号模糊函数沿多普勒频率轴的切面是与单脉冲类似的,因为脉冲形状没有发生改变(只是增加了频率调制)。然而,沿时间延迟轴的切面变化显著,与没有调制脉冲的切面图相比窄了很多,第一个零点位于:

τ n 1 ≈ 1 / B \tau_{n1}\approx 1/Bτn11/B

这表明匹配滤波器输出的有效脉冲宽度由雷达的带宽决定。

2)模糊函数切面图

5、相干脉冲串模糊度函数

相干脉冲串的模糊函数。对于 τ ′ < T / 2 \tau'τ<T/2

沿时间延迟轴的模糊函数切面:

沿多普勒频率轴的模糊函数切面:

①、MATLAB 源码

train_ambg.m

function x = train_ambg (taup, n, pri)
if( taup > pri / 2.)
   'ERROR. Pulse width must be less than the PRI/2.'
   return
end
gap = pri - 2.*taup;
eps = 0.000001;
b = 1. / taup;
ii = 0.;
for q = -(n-1):1:n-1
   tauo = q - taup ;
   index = -1.;
   for tau1 = tauo:0.0533:tauo+gap+2.*taup
      index = index + 1;
      tau = -taup + index*.0533;
      ii = ii + 1;
      j = 0.;
      for fd = -b:.0533:b
         j = j + 1;
         if (abs(tau) <= taup)
            val1 = 1. -abs(tau) / taup;
            val2 = pi * taup * fd * (1.0 - abs(tau) / taup);
            val3 = abs(val1 * sin(val2+eps) /(val2+eps)); 
            val4 = abs((sin(pi*fd*(n-abs(q))*pri+eps))/(sin(pi*fd*pri+eps)));
            x(j,ii)=  val3 * val4 / n;
         else
            x(j,ii) = 0.;
         end
      end
   end
end

fig4_8.m

close all
clear all
taup =0.2;
pri=1;
n=5;
x = train_ambg (taup, n, pri);
figure(1)
mesh(x)
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
zlabel ('Ambiguity function')
figure(2)
contour(x);
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')

②、仿真结果

1)相干脉冲串的三维模糊图

5个脉冲等幅相干串的三维模糊图,脉冲宽度为 0.2s,PRI 为 1s,N=5

2)相干脉冲串的等高线图


雷达模糊函数及MATLAB仿真(三)https://developer.aliyun.com/article/1472373

目录
相关文章
|
7天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
4天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
7天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
该程序基于ACO蚁群优化算法解决VRPSD问题,使用MATLAB2022a实现,输出优化收敛曲线及路径规划结果。ACO通过模拟蚂蚁寻找食物的行为,利用信息素和启发式信息指导搜索,有效求解带时间窗约束的车辆路径问题,最小化总行程成本。
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
5天前
|
算法 C++ Windows
基于离散差分法的复杂微分方程组求解matlab数值仿真
本程序基于离散差分法求解复杂微分方程组,将连续微分方程转化为差分方程,采用一阶显式时间格式和一阶偏心空间格式。在MATLAB2022a上测试通过,展示了运行结果。
|
10天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
基于毕奥-萨伐尔定律的交流电机的4极旋转磁场matlab模拟与仿真
本课题基于毕奥-萨伐尔定律研究交流电机的4极旋转磁场,对比不同定子半径和2极旋转磁场。通过MATLAB2022a进行仿真,核心程序计算每个导线对空间点的磁场贡献,并绘制磁场分布。毕奥-萨伐尔定律描述了电流元产生的磁场分布,对于理解交流电机中旋转磁场的形成至关重要。
|
10天前
|
机器学习/深度学习 存储 算法
基于圆柱体镜子和光线跟踪实现镜反射观测全景观图的matlab模拟仿真
本程序基于圆柱体镜子和光线跟踪技术,实现镜反射观测全景观图。通过模拟光线在场景与圆柱镜面之间的交互,构建出360°全景视图。核心算法涉及几何光学、计算机图形学和数值计算,适用于MATLAB 2022a版本。
|
10天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
47 0
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。