【分布式技术专题】「缓存解决方案」一文带领你好好认识一下企业级别的缓存技术解决方案的运作原理和开发实战(数据缓存不一致分析)

简介: 【分布式技术专题】「缓存解决方案」一文带领你好好认识一下企业级别的缓存技术解决方案的运作原理和开发实战(数据缓存不一致分析)

数据不一致的原因

在引入缓存后,数据就会分散在两个不同的数据源中。由于数据的更新是实时的,因此很难保持数据的一致性,除非采用强一致性方案。在探索适当的解决方案之前,我们需要分析导致数据不一致的主要原因,并针对性地解决这些问题:



逻辑失败导致的数据不一致

之前我们详细分析了三种更新策略。在并发的情况下,无论是先删除缓存再更新数据库,还是先更新数据库再使缓存过期,都可能导致数据不一致的情况。这主要是因为在并发操作下,异步读写请求的时序可能导致了数据不一致,我们将其称为“逻辑失败”。解决这种由并发操作时序导致的问题的核心思想是将异步操作串行化执行。

物理失败导致的数据不一致

Cache Aside 模式中,先更新数据库再删除缓存以及异步双删策略等在同一个事务中,通常情况下,当使用分布式缓存时,如果缓存服务耗时较长,将更新数据库和使缓存失效操作放在同一个事务中,会导致大量的数据库连接挂起,严重降低系统性能,甚至可能因为数据库连接数过多而导致系统崩溃。这种由于缓存操作失败而导致的数据不一致称为"物理失败"。大多数情况下,我们会采用重试的方式解决物理失败的情况。

数据一致性的解决方案

  • 物理失败导致的数据不一致:在绝大部分业务场景中,我们通常追求的是最终一致性。为了解决因物理失败而导致的数据不一致,常见的解决方案包括消费消息异步删除缓存和订阅Binlog。
  • 逻辑失败导致的数据不一致:而对于逻辑失败导致的数据不一致,常用的解决方案则是通过队列实现异步操作的同步化。



消费消息异步删除缓存

当涉及到消费消息异步删除缓存时,需要考虑数据一致性的问题。在这种情况下,如果缓存的删除操作是在消息消费后异步进行的,那么存在以下两种可能的数据一致性问题:

消息处理失败导致的数据不一致:如果消息消费过程中发生了错误,导致缓存删除操作未能正确执行,数据就会出现不一致。为了解决这个问题,可以采取一些措施,如记录消费状态、定期检查未完成的消息、重试消费等。

延迟删除导致的数据不一致:由于异步删除缓存的操作通常需要一定的时间,因此在缓存删除完成之前,可能会出现查询时获取到已经被删除的数据的情况。这种延迟删除可能会导致短暂的数据不一致。为了解决这个问题,可以采用一些方法,如使用合适的缓存过期时间、添加版本控制或标记来跟踪数据更新状态等。

主要流程如下图所示



为了确保数据一致性,可以考虑以下几点建议:

使用事务:如果可能的话,在消费消息和删除缓存的操作之间使用事务,确保它们要么都成功,要么都失败。这可以减少数据不一致的可能性。

监控和日志记录:设置监控机制来检测消息消费和缓存删除的状态,并记录日志以便排查问题和进行故障恢复。

定期校验和修复:定期检查数据一致性,并在发现问题时进行修复。可以编写一些脚本或工具来扫描数据并修复不一致性。

综上所述,要确保消费消息异步删除缓存的数据一致性,需要采取适当的措施来处理潜在的问题,并实施监控和修复机制来确保数据的准确性和一致性。

订阅Binlog

主要流程如下图所示:



利用队列串行化

在分析缓存旁路模式(cache aside pattern)时,我们发现在高并发情况下可能会发生数据不一致的情况,尽管这种情况发生的概率很低。

此外,在并发读写的情况下,如果我们先删除缓存再更新数据库,也可能导致数据不一致的问题。这些问题都是由于并发时序导致的,即写请求还未完成时,读请求就会读取到旧数据。

然而,如果我们能够确保请求的处理能够串行化,即读请求在写请求之后处理,那么就能保证读请求能够读取到最新的数据,从而避免数据不一致的问题。综上所述,我们在处理数据一致性的问题时需要考虑并发场景下请求处理的时序关系。

具体分析

采用队列将请求进行串行化。每个队列只对应一个工作线程。对于更新数据的写请求,我们将其放入队列中,等待异步处理;对于读请求,如果可以从缓存中获取数据,则直接返回;如果缓存中没有数据,我们将读请求放入队列中,等待写请求完成数据更新后再处理。

存在的问题



  • 读请求长时间阻塞:确实,如果队列中有多个写请求,读请求可能会长时间阻塞。为了解决这个问题,可以设置一个适当的超时时间,并在超时后直接从数据库中读取数据返回。这可以确保系统在高并发情况下的响应性。同时,在进行压力测试时,应注意队列中累积的写请求数量,如果积压过多,可以考虑队列的优化措施或相应解决方案。
  • 多个队列分散压力:是的,通过根据数据项进行哈希等路由方式,创建多个队列并行执行可以提高系统的吞吐量。这样可以将负载均衡到多个队列上,降低单个队列的压力,从而提高整体性能。
  • 操作复杂需要考虑全面:确实,将请求进行串行化通过队列是一种有效的数据一致性方案,但也需要考虑到队列的可用性、阻塞情况以及容灾恢复策略等问题。确保队列的稳定性和可靠性非常重要,尽量避免单点故障,并建立相应的容灾方案。

最终一致性

除了提到的三种通用方法,为缓存设置过期时间并定期进行全量同步也是一种接近最终一致性的简单有效方式。通过设置合理的过期时间,可以在缓存中保持数据的一致性,并定期进行全量同步,以确保缓存中的数据与数据库中的数据保持一致。这种方法可以在一定程度上提高系统的性能,并减少对队列串行化的依赖。

总结而言,选择适合业务场景的技术方案非常重要。在决策时,请综合考虑系统性能、数据一致性要求以及资源的限制,并进行权衡和优化。

相关文章
|
10天前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
在数字化转型中,企业亟需从海量数据中快速提取价值并转化为业务增长动力。5月15日19:00-21:00,阿里云三位技术专家将讲解Kafka与Flink的强强联合方案,帮助企业零门槛构建分布式实时分析平台。此组合广泛应用于实时风控、用户行为追踪等场景,具备高吞吐、弹性扩缩容及亚秒级响应优势。直播适合初学者、开发者和数据工程师,参与还有机会领取定制好礼!扫描海报二维码或点击链接预约直播:[https://developer.aliyun.com/live/255088](https://developer.aliyun.com/live/255088)
127 34
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
|
10天前
|
NoSQL 算法 安全
分布式锁—1.原理算法和使用建议
本文主要探讨了Redis分布式锁的八大问题,包括非原子操作、忘记释放锁、释放其他线程的锁、加锁失败处理、锁重入问题、锁竞争问题、锁超时失效及主从复制问题,并提供了相应的优化措施。接着分析了Redis的RedLock算法,讨论其优缺点以及分布式专家Martin对其的质疑。此外,文章对比了基于Redis和Zookeeper(zk)的分布式锁实现原理,包括获取与释放锁的具体流程。最后总结了两种分布式锁的适用场景及使用建议,指出Redis分布式锁虽有性能优势但模型不够健壮,而zk分布式锁更稳定但部署成本较高。实际应用中需根据业务需求权衡选择。
|
2月前
|
机器学习/深度学习 分布式计算 API
Python 高级编程与实战:深入理解并发编程与分布式系统
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧、数据科学、机器学习、Web 开发、API 设计、网络编程和异步IO。本文将深入探讨 Python 在并发编程和分布式系统中的应用,并通过实战项目帮助你掌握这些技术。
|
2月前
|
消息中间件 分布式计算 并行计算
Python 高级编程与实战:构建分布式系统
本文深入探讨了 Python 中的分布式系统,介绍了 ZeroMQ、Celery 和 Dask 等工具的使用方法,并通过实战项目帮助读者掌握这些技术。ZeroMQ 是高性能异步消息库,支持多种通信模式;Celery 是分布式任务队列,支持异步任务执行;Dask 是并行计算库,适用于大规模数据处理。文章结合具体代码示例,帮助读者理解如何使用这些工具构建分布式系统。
|
3月前
|
人工智能 Kubernetes 异构计算
大道至简-基于ACK的Deepseek满血版分布式推理部署实战
大道至简-基于ACK的Deepseek满血版分布式推理部署实战
157 5
|
3月前
|
运维 NoSQL 算法
【📕分布式锁通关指南 04】redis分布式锁的细节问题以及RedLock算法原理
本文深入探讨了基于Redis实现分布式锁时遇到的细节问题及解决方案。首先,针对锁续期问题,提出了通过独立服务、获取锁进程自己续期和异步线程三种方式,并详细介绍了如何利用Lua脚本和守护线程实现自动续期。接着,解决了锁阻塞问题,引入了带超时时间的`tryLock`机制,确保在高并发场景下不会无限等待锁。最后,作为知识扩展,讲解了RedLock算法原理及其在实际业务中的局限性。文章强调,在并发量不高的场景中手写分布式锁可行,但推荐使用更成熟的Redisson框架来实现分布式锁,以保证系统的稳定性和可靠性。
110 0
【📕分布式锁通关指南 04】redis分布式锁的细节问题以及RedLock算法原理
|
3月前
|
人工智能 Kubernetes 异构计算
大道至简-基于ACK的Deepseek满血版分布式推理部署实战
本教程演示如何在ACK中多机分布式部署DeepSeek R1满血版。
|
4月前
|
存储 缓存 Java
Java中的分布式缓存与Memcached集成实战
通过在Java项目中集成Memcached,可以显著提升系统的性能和响应速度。合理的缓存策略、分布式架构设计和异常处理机制是实现高效缓存的关键。希望本文提供的实战示例和优化建议能够帮助开发者更好地应用Memcached,实现高性能的分布式缓存解决方案。
90 9
|
12天前
|
缓存 NoSQL Java
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
33 5
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
|
2月前
|
缓存 监控 NoSQL
Redis--缓存击穿、缓存穿透、缓存雪崩
缓存击穿、缓存穿透和缓存雪崩是Redis使用过程中可能遇到的常见问题。理解这些问题的成因并采取相应的解决措施,可以有效提升系统的稳定性和性能。在实际应用中,应根据具体场景,选择合适的解决方案,并持续监控和优化缓存策略,以应对不断变化的业务需求。
122 29

热门文章

最新文章