Java数据结构与算法-java数据结构与算法(六)

简介: Java数据结构与算法-java数据结构与算法

Java数据结构与算法-java数据结构与算法(五)https://developer.aliyun.com/article/1469493


多路查找树

二叉树与 B 树

二叉树的问题分析

  1. 二叉树需要加载到内存的,如果二叉树的节点少,没有什么问题,但是如果二叉树的节点很多(比如 1 亿), 就  存在如下问题:
  2. 问题 1:在构建二叉树时,需要多次进行 i/o 操作(海量数据存在数据库或文件中),节点海量,构建二叉树时,  速度有影响
  3. 问题 2:节点海量,也会造成二叉树的高度很大,会降低操作速度

多叉树

  1. 在二叉树中,每个节点有数据项,最多有两个子节点。如果允许每个节点可以有更多的数据项和更多的子节点,  就是多叉树(multiway tree)
  2. 后面我们讲解的 2-3 树,2-3-4 树就是多叉树,多叉树通过重新组织节点,减少树的高度,能对二叉树进行优化。

2-3树是一种多叉树

B 树的基本介绍

B 树通过重新组织节点,降低树的高度,并且减少 i/o 读写次数来提升效率。

  1. 如图 B 树通过重新组织节点, 降低了树的高度.
  2. 文件系统及数据库系统的设计者利用了磁盘预读原理,将一个节点的大小设为等于一个页(页得大小通常为 4k),  这样每个节点只需要一次 I/O 就可以完全载入
  3. 将树的度 M 设置为 1024,在 600 亿个元素中最多只需要 4 次 I/O 操作就可以读取到想要的元素, B 树(B+)广泛  应用于文件存储系统以及数据库系统中

2-3 树

2-3 树是最简单的 B 树结构, 具有如下特点:

  1. 2-3 树的所有叶子节点都在同一层.(只要是 B 树都满足这个条件)
  2. 有两个子节点的节点叫二节点,二节点要么没有子节点,要么有两个子节点.
  3. 有三个子节点的节点叫三节点,三节点要么没有子节点,要么有三个子节点.
  4. 2-3 树是由二节点和三节点构成的树。

2-3 树应用案例

将数列{16, 24, 12, 32, 14, 26, 34, 10, 8, 28, 38, 20} 构建成 2-3 树,并保证数据插入的大小顺序。(演示一下构建 2-3  树的过程.)

插入规则:

  1. 2-3 树的所有叶子节点都在同一层.(只要是 B 树都满足这个条件)
  2. 有两个子节点的节点叫二节点,二节点要么没有子节点,要么有两个子节点.
  3. 有三个子节点的节点叫三节点,三节点要么没有子节点,要么有三个子节点
  4. 当按照规则插入一个数到某个节点时,不能满足上面三个要求,就需要拆,先向上拆,如果上层满,则拆本层,  拆后仍然需要满足上面 3 个条件。
  5. 对于三节点的子树的值大小仍然遵守(BST 二叉排序树)的规则

除了 23 树,还有 234 树等,概念和 23 树类似,也是一种 B 树。

B 树、B+树和 B*树

B-tree 树即 B 树,B 即 Balanced,平衡的意思。有人把 B-tree 翻译成 B-树,容易让人产生误解。会以为 B-树  是一种树,而 B 树又是另一种树。实际上,B-tree 就是指的 B 树。

前面已经介绍了 2-3 树和 2-3-4 树,他们就是 B 树(英语:B-tree 也写成 B-树),这里我们再做一个说明,我们在学  习 Mysql 时,经常听到说某种类型的索引是基于 B 树或者 B+树的,如图:

对上图的说明:

  1. B 树的阶:节点的最多子节点个数。比如 2-3 树的阶是 3,2-3-4 树的阶是 4
  2. B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询  关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点
  3. 关键字集合分布在整颗树中, 即叶子节点和非叶子节点都存放数据
  4. 搜索有可能在非叶子结点结束
  5. 其搜索性能等价于在关键字全集内做一次二分查找

B+树的介绍

B+树是 B 树的变体,也是一种多路搜索树。

对上图的说明:

  1. B+树的搜索与 B 树也基本相同,区别是 B+树只有达到叶子结点才命中(B 树可以在非叶子结点命中),其性  能也等价于在关键字全集做一次二分查找
  2. 所有关键字都出现在叶子结点的链表中(即数据只能在叶子节点【也叫稠密索引】),且链表中的关键字(数据)  恰好是有序的。
  3. 不可能在非叶子结点命中
  4. 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层
  5. 更适合文件索引系统
  6. B 树和 B+树各有自己的应用场景,不能说 B+树完全比 B 树好,反之亦然

B*树的介绍

B*树是 B+树的变体,在 B+树的非根和非叶子结点再增加指向兄弟的指针。

B*树的说明:

  1. B树定义了非叶子结点关键字个数至少为(2/3)M,即块的最低使用率为 2/3,而 B+树的块的最低使用率为的
    1/2。
  2. 从第 1 个特点我们可以看出,B*树分配新结点的概率比 B+树要低,空间使用率更高

Trie树

又称为: 前缀树,字典树

取名来自 retrieval

什么是Trie树!??

比如我们一串字符串需要检查拼写错误

数据: code cook Five File Fat

根据匹配这串字符生成的字典树

特点:

  1. 根节点不包括字符,除去根节点外 每个节点只包含一个字符
  2. 从根节点到叶子节点,路径上经过的字符,对应的字符串
  3. 每个节点的子节点包含不同的字符(相同字符在下一层节点分裂)

此时演示特点三的情况

插入规则:

  1. 先查看节点是否存在,存在i向下遍历,不存咋创建新的节点

查找规则:

  1. 从根节点开始遍历,如查找goodbye Good 找到前缀字符,但是此时字典树遍历完成,而单词并没有完成,结果任然不存在

删除规则

  1. 先要遍历出当前字符串路径,从叶子节点向上删除,除去叶子节点外的节点,如果有其他节点,此节点保留,删除子树

并查集

从一个逻辑题来给大家介绍并查集

现在有十个强盗


一号强盗与二号强盗是同伙


三号强盗与四号强盗是同伙


五号强盗与二号强盗是同伙


四号强盗与六号强盗是同伙


二号强盗与六号强盗是同伙


八号强盗与七号强盗是同伙


九号强盗与七号强盗是同伙


一号强盗与六号强盗是同伙


二号强盗与四号强盗是同伙

有一点需要注意 强盗同伙的同伙也是同伙,你能找出来有多少独立的犯罪团伙吗?

根据题目分析出逻辑上三个情况


part1  1 2 5 3 4 6


part    2 7 8 9


part   10

数组理解

这里数组下标按照从1开始理解;

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

一号和二号一组

1

1

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

三号和四号

1

1

3

3

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

五号和二号

5

5

3

3

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

四号和六号

5

5

3

3

5

3

7

8

9

10

1

2

3

4

5

6

7

8

9

10

二号和六号

5

5

3

3

5

5

7

8

9

10

1

2

3

4

5

6

7

8

9

10

八号和七号

5

5

5

5

5

5

7

8

9

10

1

2

3

4

5

6

7

8

9

10

九号和七号

5

5

3

3

5

5

9

9

9

10

1

2

3

4

5

6

7

8

9

10

以上是我们用数组变化的方式来理解的并查集逻辑题目,接下来是树的理解

树结构理解

并查集

其实就是 合并和查询的集合

合并:把两个不相交的集合合并为一个集合

查询,查询两个元素是否在同一个集合中

用一个元素代表集合,成为集合首领,判断是否在集合中,让元素存储首领来判断,合并需选出新的首领,将被合并的集合元素首领改成新的首领

另一种角度上说,并查集是将一个集合以树结构进行组合的数据结构.

优先级队列

PriocrityQueue, 根据优先级的顺序排队,

如果想要自定义规则需要自定义比较其 : conparator

简单使用优先级队列

package com.hyc.DataStructure.PriorityQueue;
import java.util.Comparator;
import java.util.PriorityQueue;
/**
 * @projectName: DataStructure
 * @package: com.hyc.DataStructure.PriorityQueue
 * @className: PriorityQueueTest
 * @author: 冷环渊 doomwatcher
 * @description: TODO
 * @date: 2022/2/26 12:25
 * @version: 1.0
 */
public class PriorityQueueTest {
    public static void main(String[] args) {
        //PriorityQueue<String> queue = new PriorityQueue<>();
        //queue.offer("1");
        //queue.offer("2");
        //queue.offer("3");
        //queue.offer("4");
        //System.out.println(queue.poll());
        //System.out.println(queue.poll());
        //System.out.println(queue.poll());
        //System.out.println(queue.poll());
        PriorityQueue<student> studentQueue = new PriorityQueue<>(new Comparator<>() {
            @Override
            public int compare(student o1, student o2) {
                if (o1.score == o2.score) {
                    return o1.name.compareTo(o2.name);
                }
                return o1.score - o2.score;
            }
            private static final long serialVersionUID = -2730510067769567346L;
        }
        );
        studentQueue.offer(new student("atuo", 80));
        studentQueue.offer(new student("dmc", 60));
        studentQueue.offer(new student("amc", 60));
        studentQueue.offer(new student("yqing", 100));
        System.out.println(studentQueue.poll());
        System.out.println(studentQueue.poll());
        System.out.println(studentQueue.poll());
        System.out.println(studentQueue.poll());
    }
}
class student {
    @Override
    public String toString() {
        return "student{" +
                "name='" + name + '\'' +
                ", score=" + score +
                '}';
    }
    public String name;
    public int score;
    public student(String name, int score) {
        this.name = name;
        this.score = score;
    }
}

实战题目

面试题 17.14. 最小K个数

设计一个算法,找出数组中最小的k个数。以任意顺序返回这k个数均可。

示例

输入: arr = [1,3,5,7,2,4,6,8] k = 4
输出 [1,2,3,4]

没有使用优先级队列的时候

public static int[] smallestK(int[] arr, int k) {
        Arrays.sort(arr);
        int[] result = new int[k];
        for (int i = 0; i < k; i++) {
            result[i] = arr[i];
        }
        return result;
    }

使用了队列的

public static int[] smallestKByQueue(int[] arr, int k) {
        PriorityQueue<Integer> queue = new PriorityQueue<>();
        int[] result = new int[k];
        for (int i = 0; i < arr.length; i++) {
            queue.offer(arr[i]);
        }
        for (int j = 0; j < k; j++) {
            result[j] = queue.poll();
        }
        return result;
    }

使用了大顶堆

public static int[] smallestByHeap(int[] arr, int k) {
        PriorityQueue<Integer> queue = new PriorityQueue<>(new Comparator<Integer>() {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o1 - o2;
            }
        });
        int[] result = new int[k];
        for (int i = 0; i < arr.length; i++) {
            queue.offer(arr[i]);
        }
        for (int i = 0; i < arr.length - k; i++) {
            queue.poll();
        }
        for (int j = 0; j < k; j++) {
            result[j] = queue.poll();
        }
        return result;
    }

这里主要是学习实战优先级队列的使用,最后提交会发现速度最快的是第一种方法

图基本介绍

  1. 前面我们学了线性表和树
  2. 线性表局限于一个直接前驱和一个直接后继的关系
  3. 树也只能有一个直接前驱也就是父节点
  4. 当我们需要表示多对多的关系时, 这里我们就用到了图。

图的举例说明

图是一种数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。 结点也可以称为

顶点。

图的常用概念

  1. 顶点(vertex)
  2. 边(edge)
  3. 路径
  4. 无向图(下图
  5. 有向图
  6. 带权图

图的表示方式

图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。

邻接矩阵

邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于 n 个顶点的图而言,矩阵是的 row 和 col 表示的是 1....n  个点。

邻接表

  1. 邻接矩阵需要为每个顶点都分配 n 个边的空间,其实有很多边都是不存在,会造成空间的一定损失.
  2. 邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成

图的快速入门案例

代码实现如下图结构.

思路:存储顶点 String 使用 ArrayList (2) 保存矩阵 int[][] edges存储顶点 String 使用 ArrayList (2) 保存矩阵 int[][] edges

图的深度优先遍历介绍

所谓图的遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种

访问策略: (1)深度优先遍历 (2)广度优先遍历

深度优先遍历基本思想

图的深度优先搜索(Depth First Search) 。

  1. 深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问  第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点, 可以这样理解:  每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。
  2. 我们可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。
  3. 显然,深度优先搜索是一个递归的过程

深度优先遍历算法步骤

  1. 访问初始结点 v,并标记结点 v 为已访问。
  2. 查找结点 v 的第一个邻接结点 w。
  3. 若 w 存在,则继续执行 4,如果 w 不存在,则回到第 1 步,将从 v 的下一个结点继续。
  4. 若 w 未被访问,对 w 进行深度优先遍历递归(即把 w 当做另一个 v,然后进行步骤 123)。
  5. 查找结点 v 的 w 邻接结点的下一个邻接结点,转到步骤 3。

深度优先代码实现

//深度优先遍历方法
    public void dfs(boolean[] isVisted, int i) {
        //    首先输出该节点
        System.out.print(getValueByindex(i) + "->");
        //    将该节点设置为已经访问过
        isVisted[i] = true;
        //查找节点i 的第一个邻结节点
        int w = getFirstNeighbor(i);
        while (w != -1) {
            if (!isVisted[w]) {
                dfs(isVisted, w);
            }
            //    如果w节点已经被访问过了,那么我
            w = getNexttNeighbor(i, w);
        }
    }
    //对dfs进行重载,遍历我们所有的节点并且进行dfs
    public void dfs() {
        for (int i = 0; i < getNumOFVertex(); i++) {
            if (!isVisted[i]) {
                dfs(isVisted, i);
            }
        }
    }

图的广度优先遍历

广度优先遍历基本思想:

  1. 图的广度优先搜索(Broad First Search) 。
  2. 类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来  访问这些结点的邻接结点

广度优先遍历算法步骤

  1. 访问初始结点 v 并标记结点 v 为已访问。
  2. 结点 v 入队列
  3. 当队列非空时,继续执行,否则算法结束。
  4. 出队列,取得队头结点 u。
  5. 查找结点 u 的第一个邻接结点 w。
  6. 若结点 u 的邻接结点 w 不存在,则转到步骤 3;否则循环执行以下三个步骤:
  1. 若结点 w 尚未被访问,则访问结点 w 并标记为已访问。
  2. 结点 w 入队列
  3. 查找结点 u 的继 w 邻接结点后的下一个邻接结点 w,转到步骤 6。

广度优先算法的代码实现

//对一个节点进行广度优先搜索遍历
    public void bfs(boolean[] isVisted, int i) {
        //表示队列的头节点的对应下标
        int u;
        //邻节点w
        int w;
        //模拟队列记录节点访问的顺序
        LinkedList<Object> queue = new LinkedList<>();
        //输出节点信息
        System.out.print(getValueByindex(i) + "->");
        //    标记为已访问
        isVisted[i] = true;
        //    将节点加入队列
        queue.addLast(i);
        //判断只要非空就一直找
        while (!queue.isEmpty()) {
            //    取出队列头节点下标
            u = (Integer) queue.removeFirst();
            w = getFirstNeighbor(u);
            while (w != -1) {
                //    是否访问过
                if (!isVisted[w]) {
                    System.out.print(getValueByindex(w) + "->");
                    //    标记已经访问
                    isVisted[w] = true;
                    //    入队
                    queue.addLast(w);
                }
                //    如果访问过 以u 为前驱点 找w后面的第一个节点
                w = getNexttNeighbor(u, w);//体现出广度优先
            }
        }
    }
    //遍历所有的节点都进行广度优先搜索
    public void bfs() {
        for (int i = 0; i < getNumOFVertex(); i++) {
            if (!isVisted[i]) {
                bfs(isVisted, i);
            }
        }
    }

代码汇总

package com.hyc.DataStructure.garph;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;
/**
 * @projectName: DataStructure
 * @package: com.hyc.DataStructure.garph
 * @className: Graph
 * @author: 冷环渊 doomwatcher
 * @description: TODO
 * @date: 2022/2/22 17:52
 * @version: 1.0
 */
public class Graph {
    //存储顶点结合
    private ArrayList<String> vertexList;
    //存储图对应的邻结矩阵
    private int[][] edges;
    //表示边的数目
    private int numOFEdges;
    private boolean[] isVisted;
    public static void main(String[] args) {
        //测试一把图是否创建ok
        int n = 8;  //结点的个数
        //String Vertexs[] = {"A", "B", "C", "D", "E"};
        String Vertexs[] = {"1", "2", "3", "4", "5", "6", "7", "8"};
        //创建图对象
        Graph graph = new Graph(n);
        //循环的添加顶点
        for (String vertex : Vertexs) {
            graph.insertVertex(vertex);
        }
        //添加边
        //A-B A-C B-C B-D B-E
//    graph.insertEdge(0, 1, 1); // A-B
//    graph.insertEdge(0, 2, 1); //
//    graph.insertEdge(1, 2, 1); //
//    graph.insertEdge(1, 3, 1); //
//    graph.insertEdge(1, 4, 1); //
        //更新边的关系
        graph.insertEdges(0, 1, 1);
        graph.insertEdges(0, 2, 1);
        graph.insertEdges(1, 3, 1);
        graph.insertEdges(1, 4, 1);
        graph.insertEdges(3, 7, 1);
        graph.insertEdges(4, 7, 1);
        graph.insertEdges(2, 5, 1);
        graph.insertEdges(2, 6, 1);
        graph.insertEdges(5, 6, 1);
        //显示 邻结矩阵
        graph.showGarph();
        ////    测试深度遍历
        System.out.println("深度遍历");
        graph.dfs();
        System.out.println();
        //测试广度优先搜索
        //System.out.println("广度遍历");
        //graph.bfs();
    }
    //构造器
    public Graph(int n) {
        //    初始化矩阵和VertexList
        edges = new int[n][n];
        vertexList = new ArrayList<String>(n);
        numOFEdges = 0;
        isVisted = new boolean[n];
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context: 得到第一个邻节点的下标
     * @date: 2022/2/22 18:22
     * @param index 如果存在就是返回对应的下标 否则返回-1
     * @return: int
     */
    public int getFirstNeighbor(int index) {
        for (int j = 0; j < vertexList.size(); j++) {
            if (edges[index][j] > 0) {
                return j;
            }
        }
        return -1;
    }
    public int getNexttNeighbor(int v1, int v2) {
        for (int j = v2 + 1; j < vertexList.size(); j++) {
            if (edges[v1][j] > 0) {
                return j;
            }
        }
        return -1;
    }
    //深度优先遍历方法
    public void dfs(boolean[] isVisted, int i) {
        //    首先输出该节点
        System.out.print(getValueByindex(i) + "->");
        //    将该节点设置为已经访问过
        isVisted[i] = true;
        //查找节点i 的第一个邻结节点
        int w = getFirstNeighbor(i);
        while (w != -1) {
            if (!isVisted[w]) {
                dfs(isVisted, w);
            }
            //    如果w节点已经被访问过了,那么我
            w = getNexttNeighbor(i, w);
        }
    }
    //对dfs进行重载,遍历我们所有的节点并且进行dfs
    public void dfs() {
        for (int i = 0; i < getNumOFVertex(); i++) {
            if (!isVisted[i]) {
                dfs(isVisted, i);
            }
        }
    }
    //对一个节点进行广度优先搜索遍历
    public void bfs(boolean[] isVisted, int i) {
        //表示队列的头节点的对应下标
        int u;
        //邻节点w
        int w;
        //模拟队列记录节点访问的顺序
        LinkedList<Object> queue = new LinkedList<>();
        //输出节点信息
        System.out.print(getValueByindex(i) + "->");
        //    标记为已访问
        isVisted[i] = true;
        //    将节点加入队列
        queue.addLast(i);
        //判断只要非空就一直找
        while (!queue.isEmpty()) {
            //    取出队列头节点下标
            u = (Integer) queue.removeFirst();
            w = getFirstNeighbor(u);
            while (w != -1) {
                //    是否访问过
                if (!isVisted[w]) {
                    System.out.print(getValueByindex(w) + "->");
                    //    标记已经访问
                    isVisted[w] = true;
                    //    入队
                    queue.addLast(w);
                }
                //    如果访问过 以u 为前驱点 找w后面的第一个节点
                w = getNexttNeighbor(u, w);//体现出广度优先
            }
        }
    }
    //遍历所有的节点都进行广度优先搜索
    public void bfs() {
        for (int i = 0; i < getNumOFVertex(); i++) {
            if (!isVisted[i]) {
                bfs(isVisted, i);
            }
        }
    }
    //图中常用的方法
    //返回节点的数目
    public int getNumOFVertex() {
        return vertexList.size();
    }
    //返回节点i 对应的下标数据
    public String getValueByindex(int i) {
        return vertexList.get(i);
    }
    //返回v1和v2的权值
    public int getWeight(int v1, int v2) {
        return edges[v1][v2];
    }
    //显示矩阵
    public void showGarph() {
        for (int[] edge : edges) {
            System.out.println(Arrays.toString(edge));
        }
    }
    //    插入顶点
    public void insertVertex(String vertex) {
        vertexList.add(vertex);
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context: 添加边
     * @date: 2022/2/22 18:01
     * @param v1 表示点的下标 即使 第几个顶点 a-b a ->0 b->1
     * @param v2 和v1同理是第二个顶点的下标
     * @param weight  表示矩阵里面用什么来表示他们是关连的 0 表示没有连接 1 表示连接了
     * @return: void
     */
    public void insertEdges(int v1, int v2, int weight) {
        edges[v1][v2] = weight;
        edges[v2][v1] = weight;
        numOFEdges++;
    }
}

图的深度优先 VS 广度优先

目录
相关文章
|
21天前
|
设计模式 算法 搜索推荐
Java 设计模式之策略模式:灵活切换算法的艺术
策略模式通过封装不同算法并实现灵活切换,将算法与使用解耦。以支付为例,微信、支付宝等支付方式作为独立策略,购物车根据选择调用对应支付逻辑,提升代码可维护性与扩展性,避免冗长条件判断,符合开闭原则。
216 35
|
6月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
1月前
|
存储 算法 搜索推荐
《数据之美》:Java数据结构与算法精要
本系列深入探讨数据结构与算法的核心原理及Java实现,涵盖线性与非线性结构、常用算法分类、复杂度分析及集合框架应用,助你提升程序效率,掌握编程底层逻辑。
|
6月前
|
存储 缓存 监控
上网行为监控系统剖析:基于 Java LinkedHashMap 算法的时间序列追踪机制探究
数字化办公蓬勃发展的背景下,上网行为监控系统已成为企业维护信息安全、提升工作效能的关键手段。该系统需实时记录并深入分析员工的网络访问行为,如何高效存储和管理这些处于动态变化中的数据,便成为亟待解决的核心问题。Java 语言中的LinkedHashMap数据结构,凭借其独有的有序性特征以及可灵活配置的淘汰策略,为上网行为监控系统提供了一种兼顾性能与功能需求的数据管理方案。本文将对LinkedHashMap在上网行为监控系统中的应用原理、实现路径及其应用价值展开深入探究。
153 3
|
28天前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
6月前
|
人工智能 算法 NoSQL
LRU算法的Java实现
LRU(Least Recently Used)算法用于淘汰最近最少使用的数据,常应用于内存管理策略中。在Redis中,通过`maxmemory-policy`配置实现不同淘汰策略,如`allkeys-lru`和`volatile-lru`等,采用采样方式近似LRU以优化性能。Java中可通过`LinkedHashMap`轻松实现LRUCache,利用其`accessOrder`特性和`removeEldestEntry`方法完成缓存淘汰逻辑,代码简洁高效。
270 0
|
7月前
|
前端开发 Java
java实现队列数据结构代码详解
本文详细解析了Java中队列数据结构的实现,包括队列的基本概念、应用场景及代码实现。队列是一种遵循“先进先出”原则的线性结构,支持在队尾插入和队头删除操作。文章介绍了顺序队列与链式队列,并重点分析了循环队列的实现方式以解决溢出问题。通过具体代码示例(如`enqueue`入队和`dequeue`出队),展示了队列的操作逻辑,帮助读者深入理解其工作机制。
215 1
|
5月前
|
存储 算法 安全
Java中的对称加密算法的原理与实现
本文详细解析了Java中三种常用对称加密算法(AES、DES、3DES)的实现原理及应用。对称加密使用相同密钥进行加解密,适合数据安全传输与存储。AES作为现代标准,支持128/192/256位密钥,安全性高;DES采用56位密钥,现已不够安全;3DES通过三重加密增强安全性,但性能较低。文章提供了各算法的具体Java代码示例,便于快速上手实现加密解密操作,帮助用户根据需求选择合适的加密方案保护数据安全。
397 58
|
4月前
|
机器学习/深度学习 算法 Java
Java实现林火蔓延路径算法
记录正在进行的森林防火项目中林火蔓延功能,本篇文章可以较好的实现森林防火蔓延,但还存在很多不足,如:很多参数只能使用默认值,所以蔓延范围仅供参考。(如果底层设备获取的数据充足,那当我没说)。注:因林火蔓延涉及因素太多,如静可燃物载量、矿质阻尼系数等存在估值,所以得出的结果仅供参考。
64 4
|
4月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
126 1

热门文章

最新文章