BurstAttention:可对非常长的序列进行高效的分布式注意力计算

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 研究人员探索了提高LLM注意力机制效率的策略,包括FlashAttention(利用SRAM加速)和RingAttention(分布式多设备处理)。新提出的BurstAttention结合两者,优化跨设备计算与通信,减少40%通信开销,使128K长度序列在8×A100 GPU上的训练速度翻倍。论文于3月发布,但实现未公开

提高llm中注意力机制效率的努力主要集中在两种方法上:优化单设备计算和存储能力,如FlashAttention,以及利用多设备的分布式系统,如RingAttention。

FlashAttention通过使用静态随机存储器(SRAM)来存储中间状态,而不是依赖于高带宽存储器(HBM)来提高注意力计算速度。

而RingAttention通过将长序列划分为子序列并将其分布在多个设备上进行并行处理来处理长序列。

虽然它们都提高了处理速度和效率,如果将它们组合起来使用是否可以有更大的提高呢?理论上是这样,但是在分布式环境中直接组合这两种方法无法充分利用它们的优势,并且存在兼容性问题。

而最新的研究BurstAttention可以将2者结合,作为RingAttention和FlashAttention之间的桥梁。

BurstAttention是一个创新的框架,它优化了跨设备的计算和通信,增强了内存使用,最小化了通信开销,提高了缓存效率。

BurstAttention在集群中的设备之间分割序列,每个设备通过将序列投影到查询、键和值嵌入中来处理序列的一部分。然后这些片段在设备之间循环,计算本地注意力得分,并将其汇总为全局注意力得分。

在他们的实验中,表明BurstAttention减少了40%的通信开销,并将8×A100 gpu上128K长度序列的训练速度提高了一倍。

这篇论文是3月发布的,但是作者没有提到他们是否会发布他们的实现,所以我们先看看他的论文吧:

https://avoid.overfit.cn/post/5aacdef85b104ff0a9faea9ad84f2a95

目录
相关文章
|
SQL 分布式计算 大数据
黑马程序员-大数据入门到实战-分布式SQL计算 Hive 入门
黑马程序员-大数据入门到实战-分布式SQL计算 Hive 入门
150 0
|
SQL 存储 大数据
黑马程序员-大数据入门到实战-分布式SQL计算 Hive 语法与概念
黑马程序员-大数据入门到实战-分布式SQL计算 Hive 语法与概念
141 0
|
14天前
|
存储 分布式计算 负载均衡
分布式计算模型和集群计算模型的区别
【10月更文挑战第18天】分布式计算模型和集群计算模型各有特点和优势,在实际应用中需要根据具体的需求和条件选择合适的计算架构模式,以达到最佳的计算效果和性能。
37 2
|
1月前
|
分布式计算 资源调度 Hadoop
Hadoop-05-Hadoop集群 集群WordCount 超详细 真正的分布式计算 上传HDFS MapReduce计算 YRAN查看任务 上传计算下载查看
Hadoop-05-Hadoop集群 集群WordCount 超详细 真正的分布式计算 上传HDFS MapReduce计算 YRAN查看任务 上传计算下载查看
45 1
|
6月前
|
存储 分布式计算 分布式数据库
【专栏】云计算与分布式系统架构在数字化时代的关键作用。云计算,凭借弹性、可扩展性和高可用性,提供便捷的计算环境
【4月更文挑战第27天】本文探讨了云计算与分布式系统架构在数字化时代的关键作用。云计算,凭借弹性、可扩展性和高可用性,提供便捷的计算环境;分布式系统架构则通过多计算机协同工作,实现任务并行和容错。两者相互依存,共同推动企业数字化转型、科技创新、公共服务升级及数字经济发展。虚拟化、分布式存储和计算、网络技术是其核心技术。未来,深化研究与应用这些技术将促进数字化时代的持续进步。
182 4
|
3月前
|
分布式计算 并行计算 大数据
NumPy 并行计算与分布式部署
【8月更文第30天】随着数据量的不断增长,传统的单机计算模型已经难以满足对大规模数据集处理的需求。并行和分布式计算成为了处理这些大数据集的关键技术。虽然 NumPy 本身并不直接支持并行计算,但可以通过结合其他库如 Numba 和 Dask 来实现高效的并行和分布式计算。
36 1
|
4月前
|
并行计算 安全 数据处理
探索操作系统的未来:量子计算与分布式技术的融合
随着量子计算的逐步成熟和分布式技术的快速发展,传统的操作系统面临着前所未有的挑战与机遇。本文将探讨如何通过结合量子计算原理和分布式系统设计,来构建未来操作系统的新范式。我们将分析当前操作系统的限制,阐述量子计算和分布式技术的优势,以及它们如何共同推动操作系统设计的革新。
|
4月前
|
存储 关系型数据库 分布式数据库
PolarDB,阿里云的云原生分布式数据库,以其存储计算分离架构为核心,解决传统数据库的扩展性问题
【7月更文挑战第3天】PolarDB,阿里云的云原生分布式数据库,以其存储计算分离架构为核心,解决传统数据库的扩展性问题。此架构让存储层专注数据可靠性,计算层专注处理SQL,提升性能并降低运维复杂度。通过RDMA加速通信,多副本确保高可用性。资源可独立扩展,便于成本控制。动态添加计算节点以应对流量高峰,展示了其灵活性。PolarDB的开源促进了数据库技术的持续创新和发展。
293 2
|
5月前
|
分布式计算 负载均衡 算法
操作系统的未来:量子计算与分布式架构的融合
本文深入探讨了操作系统领域即将到来的变革,特别是量子计算和分布式架构如何重塑我们对操作系统的认知和使用。文章首先概述了当前操作系统的局限性,并引入量子计算的概念及其对操作系统设计的潜在影响。随后,详细讨论了分布式架构在提升系统性能、可靠性和安全性方面的优势。通过分析现有研究和未来趋势,本文揭示了量子计算与分布式架构结合的可能性及其对操作系统未来发展的意义,为读者提供了一个全新的视角来审视这一领域的进步。
|
6月前
|
存储 缓存 监控
Java一分钟之-Apache Ignite:分布式内存计算平台
【5月更文挑战第21天】Apache Ignite是一款开源的分布式内存计算平台,涉及内存数据网格、流处理和计算服务。本文关注其常见问题,如数据丢失、分区不均、内存管理和网络延迟。为保证数据一致性,建议使用适当的數據模式和备份策略,实现数据持久化。优化内存配置和监控网络可提升性能与稳定性。提供的Java代码示例展示了如何创建分区缓存并设置备份。正确配置和管理Ignite是构建高可用、高性能应用的关键,持续监控集群状态至关重要。
163 0
下一篇
无影云桌面