PolarDB,阿里云的云原生分布式数据库,以其存储计算分离架构为核心,解决传统数据库的扩展性问题

本文涉及的产品
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
简介: 【7月更文挑战第3天】PolarDB,阿里云的云原生分布式数据库,以其存储计算分离架构为核心,解决传统数据库的扩展性问题。此架构让存储层专注数据可靠性,计算层专注处理SQL,提升性能并降低运维复杂度。通过RDMA加速通信,多副本确保高可用性。资源可独立扩展,便于成本控制。动态添加计算节点以应对流量高峰,展示了其灵活性。PolarDB的开源促进了数据库技术的持续创新和发展。

在数据库技术的长河中,架构的演进始终伴随着业务需求和技术突破的双重驱动。PolarDB,作为阿里巴巴自主研发的新一代云原生分布式数据库,其核心设计理念——存储计算分离架构,无疑是其在大数据时代脱颖而出的关键。本文将深入PolarDB内核,探讨这一设计哲学背后的奥秘,揭示其如何在保证高性能、高可用性和可扩展性的同时,降低了运维复杂度。

存储计算分离架构概览

传统数据库系统中,存储和计算通常紧密结合在同一台服务器上。随着数据量的增长和业务需求的多样化,这种架构逐渐暴露出扩展性差、资源分配不灵活等问题。PolarDB创新性地引入了存储计算分离架构,将数据存储层与计算处理层分离,各司其职,灵活扩展。

  • 存储层:集中存放数据块,采用分布式文件系统,支持多副本冗余,确保数据高可靠性和高可用性。
  • 计算层:运行数据库引擎,处理SQL查询、事务管理等计算任务,可以根据业务需求独立扩展。

设计哲学剖析

高性能

存储计算分离架构使得计算节点能够专注于处理业务逻辑,而存储层则通过优化的数据布局和高效的I/O调度,提升数据读写速度。此外,PolarDB采用了基于RDMA(远程直接内存访问)的高速网络通信,极大减少了数据传输延迟,保障了跨节点数据访问的高性能。

高可用性

存储层的多副本设计确保了数据的持久性和可用性。即使单点故障发生,也能迅速通过其他副本接管服务,保证业务连续性。计算层的无状态设计允许快速故障转移,进一步增强了系统的整体韧性。

灵活扩展

得益于分离架构,计算资源和存储资源可以根据实际需求独立扩展。当业务量增长时,仅需增加计算节点即可提升处理能力,无需对存储进行同等比例扩容,有效控制成本。

实践案例:动态扩展

下面通过一个简化的示例,展示如何在PolarDB中动态添加计算节点,以应对业务高峰期的流量激增。

操作步骤

  1. 准备新节点:确保新服务器已安装好Docker环境,并配置好网络连接。
  2. 加入集群:执行类似以下的Docker命令,将新计算节点加入现有集群。注意替换相应参数。
docker run -d --name polar_node_new --net=host \
  -v /etc/localtime:/etc/localtime:ro \
  -v /your/data/path:/data \
  -e PD_ENDPOINTS=CONTROL_NODE_IP:2379 \
  -e NODE_ID=NEW_NODE_ID \
  apsaradb/polardb:latest tidb-server
  1. 验证状态:通过控制节点上的管理工具检查新节点是否已成功加入并正常工作。

总结

PolarDB的存储计算分离架构不仅是一种技术创新,更是对未来数据库发展趋势的深刻洞察。它解决了传统数据库在扩展性、性能和可用性方面面临的挑战,为云原生时代的企业级应用提供了强大的数据处理能力。通过深入理解这一设计哲学,开发者和运维人员可以更好地利用PolarDB,构建出适应复杂业务场景的高性能数据库系统。

随着PolarDB开源项目的不断成熟,更多关于其内核优化、最佳实践和生态建设的探索将持续展开,共同推动数据库技术迈向新的高度。

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
3月前
|
Cloud Native 关系型数据库 分布式数据库
阿里云牵手海亮科技,共建“教育科技数据库创新应用中心”
海亮科技选择引入阿里云PolarDB开源分布式版(PolarDB for Xscale)数据库,不仅能解决海亮科技数据库业务中面临的可靠性、稳定性问题,也为海亮科技业务的高速发展提供了更好的灵活性和可扩展性。
|
2月前
|
缓存 弹性计算 NoSQL
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应
|
2月前
|
安全 NoSQL 关系型数据库
阿里云数据库:助力企业数字化转型的强大引擎
阿里云数据库:助力企业数字化转型的强大引擎
|
3月前
|
存储 缓存 关系型数据库
阿里云数据库 SelectDB 多计算集群核心设计要点揭秘与场景应用
在云原生存算分离架构下,多计算集群的实现从技术方案上看似乎并不存在过多难题。但从产品的角度而言,具备成熟易用的多计算集群能力且能运用于用户实际业务场景中,还有较多核心要点需要深度设计
阿里云数据库 SelectDB 多计算集群核心设计要点揭秘与场景应用
|
2月前
|
存储 NoSQL MongoDB
基于阿里云数据库MongoDB版,微财数科“又快又稳”服务超7000万客户
选择MongoDB主要基于其灵活的数据模型、高性能、高可用性、可扩展性、安全性和强大的分析能力。
|
2月前
|
人工智能 Cloud Native 关系型数据库
阿里云关系型数据库连续五年蝉联榜首
全球领先的IT市场研究和咨询公司IDC发布了《2023年下半年中国关系型数据库软件市场跟踪报告》,2023年阿里云整体市场份额(公有云+本地部署模式)稳居第一,其中公有云市场份额高达39.2%,自2019年起连续5年蝉联榜首。
|
2月前
|
存储 监控 分布式数据库
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
本文介绍了百亿级数据存储架构的设计与实现,重点探讨了ElasticSearch和HBase的结合使用。通过ElasticSearch实现快速检索,HBase实现海量数据存储,解决了大规模数据的高效存储与查询问题。文章详细讲解了数据统一接入、元数据管理、数据一致性及平台监控等关键模块的设计思路和技术细节,帮助读者理解和掌握构建高性能数据存储系统的方法。
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
|
2月前
|
安全 NoSQL 关系型数据库
阿里云数据库:构建高性能与安全的数据管理系统
在企业数字化转型过程中,数据库是支撑企业业务运转的核心。随着数据量的急剧增长和数据处理需求的不断增加,企业需要一个既能提供高性能又能保障数据安全的数据库解决方案。阿里云数据库产品为企业提供了一站式的数据管理服务,涵盖关系型、非关系型、内存数据库等多种类型,帮助企业构建高效的数据基础设施。
73 2
|
2月前
|
存储 分布式计算 数据库
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版
|
3月前
|
Cloud Native 关系型数据库 分布式数据库
阿里云牵手海亮科技,共建“教育科技数据库创新应用中心”
近日,阿里云与世界500强旗下、国内领先的教育服务提供商海亮科技集团(以下简称“海亮科技”)达成合作,联合成立“教育科技数据库创新应用中心”。双方将充分整合优势资源,共同推进教育科技领域的数据库技术研究和国产数据库的应用与发展。
91 8

热门文章

最新文章