数仓学习---数仓开发之DWS层

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 数仓学习---数仓开发之DWS层

数仓开发之DWS层(需要思考,考验一个人的能力)

设计要点:

(1)DWS层的设计参考指标体系。

(2)DWS层的数据存储格式为orc列式存储+snappy压缩。

(3)DWS层表名的命名规范为dws_数据域_统计粒度_业务过程_统计周期(1d/nd/td)。

注:1d表示最近1日,nd表示最近n日,td表示历史至今(本质是时间范围来统计)

image.png

image.png

表的分类:根据数据范围进行分类
--1d:1天的数据的统计
    --数据来源为DIM,DWD
--nd:N天的数据的统计
    --数据来源必须为1d的表
--td:所有数据的统计
    --数据来源可以为1d表,也可以为DIM,DWD
--表的设计
  --参考ADS层表的设计
     --指标体系:
         --原子指标
           --行为,统计字段,统计逻辑
         --派生指标(增加条件)
            --统计周期(范围)+业务限定(筛选条件)+统计粒度(分组维度)
         --衍生指标(比率,比例)
  --表名
     --为dwd_数据域_统计粒度+业务过程+统计周期(1d/nd/td)
       --指标:客户想要的一个统计结果(数值)
          业务过程相同:数据来源相同
          统计周期相同:数据范围相同
          统计粒度相同:数据含义相同
             

DWS层-表的设计问题

--1d表
--nd表
--td表
DROP TABLE IF EXISTS dws_order_stats_by_cate;
CREATE EXTERNAL TABLE dws_order_stats_by_tm_1d_a
(
  
    `tm_id`,                  STRING COMMENT '品牌ID',
    `tm_name`                STRING COMMENT '品牌名称',
    `order_id`             BIGINT COMMENT '用户ID',
    `order_user_count`        BIGINT COMMENT '下单人数'
) COMMENT '各品类商品下单统计'
  partition by(`dt` String)
  stored as orc
  location '/warehourse/gmall/dws/dws_order_stats_by_tm_1d/'
  tblproperties('orc.compress'='snappy');

image.png

image.png


nd(7d):
2022-06-(02~08)  sum(order_id)7     sum(user_id)7d
dws层表的字段在预统计时,如果字段可以跨越天,那么就不能再每天中统计
因为最终统计需要指定的字段,但是提前聚合不能对这个字段做统计,所以为了避免数据丢失
需要再表中增加这个字段,而不是统计这个字段
insert overwrite table dws_order_stats_by_tm_1d_a partition (dt='2022-06-08')
select
  tm_id,tm_name,
user_id,
count(distinct order_id)
from(
    select
    order_id,sku_id,user_id
  from
   dwd_trade_order_detail_inc
  where dt='2022-06-08'
)od
left join(
  select
  id,tm_id,tm_name
  from dim_sku_full
  where dt='2022-06-08'
)sku on od.sku_id=sku.id
group by tm_id,tm_name


2022-06-08:
华为 zhangsan 12
华为 李四 5
select '2022-06-08',1,tm_id,tm_name,sum(order_count_1d),
count(user_id)
from dws_order_stats_by_tm_1d_a
where dt='2022-06-08'
group by tm_id,tm_name
--dws层设计目的其实就是简化计算,提前进行预聚合的操作
  --底层实现,依然是数据写入文件,在读取文件,性能一定会受到影响
  --如果表的设计可以在多个地方使用,那么就可以提高效率

我们为了提高性能,比如实现各品类商品下单人数,我们可以把表设计一个共用的

DROP TABLE IF EXISTS dws_order_stats_by_sku_a;
CREATE EXTERNAL TABLE dws_order_stats_by_sku_a
(
    `sku_id`                  STRING COMMENT '品牌ID',
  `category1_id`            STRING COMMENT '一级品类ID',
    `category1_name`          STRING COMMENT '一级品类名称',
  
    `tm_id`,                  STRING COMMENT '品牌ID',
    `tm_name`                STRING COMMENT '品牌名称',
    `order_id`             BIGINT COMMENT '用户ID',
     `order_count_1d`             BIGINT COMMENT '下单数',
) COMMENT '各品类商品下单统计'
  partition by(`dt` String)
  stored as orc
  location '/warehourse/gmall/dws/dws_order_stats_by_sku_a/'
  tblproperties('orc.compress'='snappy');

交易域用户商品粒度订单最近n日汇总表

--交易域
--用户商品粒度:user+sku
--订单
  --下单
--最近1日汇总表:数据范围
DROP TABLE IF EXISTS dws_trade_user_sku_order_1d;
CREATE EXTERNAL TABLE dws_trade_user_sku_order_1d
(
    `user_id`                   STRING COMMENT '用户ID',
    `sku_id`                    STRING COMMENT 'SKU_ID',
    `sku_name`                  STRING COMMENT 'SKU名称',
    `category1_id`              STRING COMMENT '一级品类ID',
    `category1_name`            STRING COMMENT '一级品类名称',
    `category2_id`              STRING COMMENT '二级品类ID',
    `category2_name`            STRING COMMENT '二级品类名称',
    `category3_id`              STRING COMMENT '三级品类ID',
    `category3_name`            STRING COMMENT '三级品类名称',
    `tm_id`                      STRING COMMENT '品牌ID',
    `tm_name`                    STRING COMMENT '品牌名称',
    `order_count_1d`            BIGINT COMMENT '最近1日下单次数',
    `order_num_1d`              BIGINT COMMENT '最近1日下单件数',
    `order_original_amount_1d`  DECIMAL(16, 2) COMMENT '最近1日下单原始金额',
    `activity_reduce_amount_1d` DECIMAL(16, 2) COMMENT '最近1日活动优惠金额',
    `coupon_reduce_amount_1d`   DECIMAL(16, 2) COMMENT '最近1日优惠券优惠金额',
    `order_total_amount_1d`     DECIMAL(16, 2) COMMENT '最近1日下单最终金额'
) COMMENT '交易域用户商品粒度订单最近1日汇总表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_sku_order_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');

数据装载

 --1d表存储的数据为1天的行为数据的统计结果,存放在一天的分区中

 --dwd的数据其实是包含历史行为数据(7,6,5,4),历史数据也应该进行统计

--1d表数据装载分为首日装载和每日装载

--首日装载:包含历史数据

--每日装载:包含当日数据

insert overwrite table dws_trade_user_sku_order_1d partition (dt)
select 
    `user_id`                   STRING COMMENT '用户ID',
    `sku_id`                    STRING COMMENT 'SKU_ID',
    `sku_name`                  STRING COMMENT 'SKU名称',
    `category1_id`              STRING COMMENT '一级品类ID',
    `category1_name`            STRING COMMENT '一级品类名称',
    `category2_id`              STRING COMMENT '二级品类ID',
    `category2_name`            STRING COMMENT '二级品类名称',
    `category3_id`              STRING COMMENT '三级品类ID',
    `category3_name`            STRING COMMENT '三级品类名称',
    `tm_id`                      STRING COMMENT '品牌ID',
    `tm_name`                    STRING COMMENT '品牌名称',
   count(distinct order_id) `order_count_1d`            BIGINT COMMENT '最近1日下单次数',
    sum(sku_num) `order_num_1d`              BIGINT COMMENT '最近1日下单件数',
    sum( split_original_amount) `order_original_amount_1d`  DECIMAL(16, 2) COMMENT '最近1日下单原始金额',
    sum(split_coupon_amount)`activity_reduce_amount_1d` DECIMAL(16, 2) COMMENT '最近1日活动优惠金额',
    sum(split_coupon_amount) `coupon_reduce_amount_1d`   DECIMAL(16, 2) COMMENT '最近1日优惠券优惠金额',
    sum(   split_total_amount) `order_total_amount_1d`     DECIMAL(16, 2) COMMENT '最近1日下单最终金额',
   dt
  
from(
  select
    `user_id`                   STRING COMMENT '用户ID',
    `sku_id`                    STRING COMMENT 'SKU_ID',
     sku_num,
     split_original_amount,
     split_activity_amount,
     split_coupon_amount,
     split_total_amount,
     dt #那天下的订单
from dwd_trade_order_detail_inc

)od
left join(
      select
      id,
       `sku_name`                  STRING COMMENT 'SKU名称',
          `category1_id`              STRING COMMENT '一级品类ID',
          `category1_name`            STRING COMMENT '一级品类名称',
          `category2_id`              STRING COMMENT '二级品类ID',
          `category2_name`            STRING COMMENT '二级品类名称',
          `category3_id`              STRING COMMENT '三级品类ID',
          `category3_name`            STRING COMMENT '三级品类名称',
          `tm_id`                      STRING COMMENT '品牌ID',
          `tm_name`                    STRING COMMENT '品牌名称',

      from dim_sku_full
      where dt='2022-06-08'
)sku  on od.sku_id=sku.id
group by
dt,
`user_id`                   ,
    `sku_id`                ,
    `sku_name`                 ,
    `category1_id`            ,
    `category1_name`         ,
    `category2_id`            ,
    `category2_name`          ,
    `category3_id`              ,
    `category3_name`          ,
    `tm_id`                     ,
    `tm_name`                    

每日装载

insert overwrite table dws_trade_user_sku_order_1d partition (dt='2022-06-09')
select 
    `user_id`                   STRING COMMENT '用户ID',
    `sku_id`                    STRING COMMENT 'SKU_ID',
    `sku_name`                  STRING COMMENT 'SKU名称',
    `category1_id`              STRING COMMENT '一级品类ID',
    `category1_name`            STRING COMMENT '一级品类名称',
    `category2_id`              STRING COMMENT '二级品类ID',
    `category2_name`            STRING COMMENT '二级品类名称',
    `category3_id`              STRING COMMENT '三级品类ID',
    `category3_name`            STRING COMMENT '三级品类名称',
    `tm_id`                      STRING COMMENT '品牌ID',
    `tm_name`                    STRING COMMENT '品牌名称',
   count(distinct order_id) `order_count_1d`            BIGINT COMMENT '最近1日下单次数',
    sum(sku_num) `order_num_1d`              BIGINT COMMENT '最近1日下单件数',
    sum( split_original_amount) `order_original_amount_1d`  DECIMAL(16, 2) COMMENT '最近1日下单原始金额',
    sum(split_coupon_amount)`activity_reduce_amount_1d` DECIMAL(16, 2) COMMENT '最近1日活动优惠金额',
    sum(split_coupon_amount) `coupon_reduce_amount_1d`   DECIMAL(16, 2) COMMENT '最近1日优惠券优惠金额',
    sum(   split_total_amount) `order_total_amount_1d`     DECIMAL(16, 2) COMMENT '最近1日下单最终金额',
  
  
from(
  select
    `user_id`                   STRING COMMENT '用户ID',
    `sku_id`                    STRING COMMENT 'SKU_ID',
     sku_num,
     split_original_amount,
     split_activity_amount,
     split_coupon_amount,
     split_total_amount,
 
from dwd_trade_order_detail_inc
  where dt='2022-06-09'

)od
left join(
      select
      id,
       `sku_name`                  STRING COMMENT 'SKU名称',
          `category1_id`              STRING COMMENT '一级品类ID',
          `category1_name`            STRING COMMENT '一级品类名称',
          `category2_id`              STRING COMMENT '二级品类ID',
          `category2_name`            STRING COMMENT '二级品类名称',
          `category3_id`              STRING COMMENT '三级品类ID',
          `category3_name`            STRING COMMENT '三级品类名称',
          `tm_id`                      STRING COMMENT '品牌ID',
          `tm_name`                    STRING COMMENT '品牌名称',

      from dim_sku_full
      where dt='2022-06-09'
)sku  on od.sku_id=sku.id
group by

`user_id`                   ,
    `sku_id`                ,
    `sku_name`                 ,
    `category1_id`            ,
    `category1_name`         ,
    `category2_id`            ,
    `category2_name`          ,
    `category3_id`              ,
    `category3_name`          ,
    `tm_id`                     ,
    `tm_name`                    

image.png

set hive.exec.dynamic.partition.mode=nonstrict;
-- Hive的bug:对某些类型数据的处理可能会导致报错,关闭矢量化查询优化解决
set hive.vectorized.execution.enabled = false;
insert overwrite table dws_trade_user_sku_order_1d partition(dt)
select
    user_id,
    id,
    sku_name,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    tm_id,
    tm_name,
    order_count_1d,
    order_num_1d,
    order_original_amount_1d,
    activity_reduce_amount_1d,
    coupon_reduce_amount_1d,
    order_total_amount_1d,
    dt
from
(
    select
        dt,
        user_id,
        sku_id,
        count(*) order_count_1d,
        sum(sku_num) order_num_1d,
        sum(split_original_amount) order_original_amount_1d,
        sum(nvl(split_activity_amount,0.0)) activity_reduce_amount_1d,
        sum(nvl(split_coupon_amount,0.0)) coupon_reduce_amount_1d,
        sum(split_total_amount) order_total_amount_1d
    from dwd_trade_order_detail_inc
    group by dt,user_id,sku_id
)od
left join
(
    select
        id,
        sku_name,
        category1_id,
        category1_name,
        category2_id,
        category2_name,
        category3_id,
        category3_name,
        tm_id,
        tm_name
    from dim_sku_full
    where dt='2022-06-08'
)sku
on od.sku_id=sku.id;
-- 矢量化查询优化可以一定程度上提升执行效率,不会触发前述Bug时,应打开
set hive.vectorized.execution.enabled = true;

问题

me:补全数据后=>统计(效率低)=》缺什么补什么逻辑简单

course:统计=》补全数据(效率高)=>优化(连接之前减少数据)=》统计的结果和补全的数据没有关系

统计结果如果和补全的数据有关系,

--学习方式:由浅入深

交易域用户粒度加购最近n日汇总表

--最近n日汇总
  --nd
     --表设计:参考1d表
     --数据来源:1d表
DROP TABLE IF EXISTS dws_trade_user_sku_order_nd;
CREATE EXTERNAL TABLE dws_trade_user_sku_order_nd
(
    `user_id`                     STRING COMMENT '用户ID',
    `sku_id`                      STRING COMMENT 'SKU_ID',
    `sku_name`                    STRING COMMENT 'SKU名称',
    `category1_id`               STRING COMMENT '一级品类ID',
    `category1_name`             STRING COMMENT '一级品类名称',
    `category2_id`               STRING COMMENT '二级品类ID',
    `category2_name`             STRING COMMENT '二级品类名称',
    `category3_id`               STRING COMMENT '三级品类ID',
    `category3_name`             STRING COMMENT '三级品类名称',
    `tm_id`                       STRING COMMENT '品牌ID',
    `tm_name`                     STRING COMMENT '品牌名称',
    `order_count_7d`             STRING COMMENT '最近7日下单次数',
    `order_num_7d`               BIGINT COMMENT '最近7日下单件数',
    `order_original_amount_7d`   DECIMAL(16, 2) COMMENT '最近7日下单原始金额',
    `activity_reduce_amount_7d`  DECIMAL(16, 2) COMMENT '最近7日活动优惠金额',
    `coupon_reduce_amount_7d`    DECIMAL(16, 2) COMMENT '最近7日优惠券优惠金额',
    `order_total_amount_7d`      DECIMAL(16, 2) COMMENT '最近7日下单最终金额',
    `order_count_30d`            BIGINT COMMENT '最近30日下单次数',
    `order_num_30d`              BIGINT COMMENT '最近30日下单件数',
    `order_original_amount_30d`  DECIMAL(16, 2) COMMENT '最近30日下单原始金额',
    `activity_reduce_amount_30d` DECIMAL(16, 2) COMMENT '最近30日活动优惠金额',
    `coupon_reduce_amount_30d`   DECIMAL(16, 2) COMMENT '最近30日优惠券优惠金额',
    `order_total_amount_30d`     DECIMAL(16, 2) COMMENT '最近30日下单最终金额'
) COMMENT '交易域用户商品粒度订单最近n日汇总表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_sku_order_nd'
    TBLPROPERTIES ('orc.compress' = 'snappy');

--nd表的数据装载基本思虑

--1.读取最大范围的数据:30d

  2.同时计算不同时间范围的数据

     --sum(if):有条件的求和

insert overwrite table dws_trade_user_sku_order_nd partition(dt='2022-06-08')
select
`user_id`                     STRING COMMENT '用户ID',
    `sku_id`                      STRING COMMENT 'SKU_ID',
    `sku_name`                    STRING COMMENT 'SKU名称',
    `category1_id`               STRING COMMENT '一级品类ID',
    `category1_name`             STRING COMMENT '一级品类名称',
    `category2_id`               STRING COMMENT '二级品类ID',
    `category2_name`             STRING COMMENT '二级品类名称',
    `category3_id`               STRING COMMENT '三级品类ID',
    `category3_name`             STRING COMMENT '三级品类名称',
    `tm_id`                       STRING COMMENT '品牌ID',
    `tm_name`                     STRING COMMENT '品牌名称',
     sum(if(date_sub('2022-06-08',6),order_count_1d,0 )),
  sum(if(date_sub('2022-06-08',6),order_num_1d,0)),
  sum(if(date_sub('2022-06-08',6),order_original_amount_1d,0)),
  sum(if(date_sub('2022-06-08',6),activity_reduce_amount_1d,0)),
  sum(if(date_sub('2022-06-08',6),coupon_reduce_amount_1d,0)),
  sum(if(date_sub('2022-06-08',6),order_total_amount_1d,0)),
 sum(order_count_1d),
  sum(order_num_1d),
  sum(order_original_amount_1d),
  sum(activity_reduce_amount_1d),
  sum(coupon_reduce_amount_1d),
  sum(order_total_amount_1d),
  from dws_trade_user_sku_order_1d
where dt  >=date_sub('2022-06-08',29) and dt<='2022-06-08'
group by
`user_id`                     STRING COMMENT '用户ID',
    `sku_id`                      STRING COMMENT 'SKU_ID',
    `sku_name`                    STRING COMMENT 'SKU名称',
    `category1_id`               STRING COMMENT '一级品类ID',
    `category1_name`             STRING COMMENT '一级品类名称',
    `category2_id`               STRING COMMENT '二级品类ID',
    `category2_name`             STRING COMMENT '二级品类名称',
    `category3_id`               STRING COMMENT '三级品类ID',
    `category3_name`             STRING COMMENT '三级品类名称',
    `tm_id`                       STRING COMMENT '品牌ID',
    `tm_name`                  

交易域用户商品粒度订单最近1日汇总表

1)建表语句
DROP TABLE IF EXISTS dws_trade_user_sku_order_1d;
CREATE EXTERNAL TABLE dws_trade_user_sku_order_1d
(
    `user_id`                   STRING COMMENT '用户ID',
    `order_count_1d`            BIGINT COMMENT '最近1日下单次数',
    `order_num_1d`              BIGINT COMMENT '最近1日下单件数',
    `order_original_amount_1d`  DECIMAL(16, 2) COMMENT '最近1日下单原始金额',
    `activity_reduce_amount_1d` DECIMAL(16, 2) COMMENT '最近1日活动优惠金额',
    `coupon_reduce_amount_1d`   DECIMAL(16, 2) COMMENT '最近1日优惠券优惠金额',
    `order_total_amount_1d`     DECIMAL(16, 2) COMMENT '最近1日下单最终金额'
) COMMENT '交易域用户商品粒度订单最近1日汇总表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_sku_order_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');

首日装载:含有历史数据

insert overwrite table dws_trade_user_order_1d partition (dt)
select user_id,count(distinct order_id),
sum(sku_num),
 sum(split_original_amount),
  sum(   split_activity_amount),
    sum( split_coupon_amount),
    sum( split_total_amount),
    dt
    from dwd_trade_order_detail_inc
    group by user_id,dt

每日装载:

insert overwrite table dws_trade_user_order_1d partition (dt='2022-06-09')
select user_id,count(distinct order_id),
sum(sku_num),
 sum(split_original_amount),
  sum(   split_activity_amount),
    sum( split_coupon_amount),
    sum( split_total_amount)
    from dwd_trade_order_detail_inc
    group by user_id
    where dt='2022-06-09'

统计粒度变化

--DWS层的表不是最终的表,还需要进一步计算

   --dws:user+sku(tm)

   --ads:tm

image.png

image.png

粒度没变

--dws:user+sku

--ads:user+sku

粒度没有变化的情况下,可以直接将中间表的数据获取后使用

交易域用户粒度订单历史至今汇总表(td)

DROP TABLE IF EXISTS dws_trade_user_order_td;
CREATE EXTERNAL TABLE dws_trade_user_order_td
(
    `user_id`                   STRING COMMENT '用户ID',
    `order_date_first`          STRING COMMENT '历史至今首次下单日期',
    `order_date_last`           STRING COMMENT '历史至今末次下单日期',
    `order_count_td`            BIGINT COMMENT '历史至今下单次数',
    `order_num_td`              BIGINT COMMENT '历史至今购买商品件数',
    `original_amount_td`        DECIMAL(16, 2) COMMENT '历史至今下单原始金额',
    `activity_reduce_amount_td` DECIMAL(16, 2) COMMENT '历史至今下单活动优惠金额',
    `coupon_reduce_amount_td`   DECIMAL(16, 2) COMMENT '历史至今下单优惠券优惠金额',
    `total_amount_td`           DECIMAL(16, 2) COMMENT '历史至今下单最终金额'
) COMMENT '交易域用户粒度订单历史至今汇总表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_order_td'
    TBLPROPERTIES ('orc.compress' = 'snappy');

首日装载

insert overwrite table dws_trade_user_order_td partition(dt='2022-06-08')
select
    user_id,
    min(dt) order_date_first,
    max(dt) order_date_last,
    sum(order_count_1d) order_count,
    sum(order_num_1d) order_num,
    sum(order_original_amount_1d) original_amount,
    sum(activity_reduce_amount_1d) activity_reduce_amount,
    sum(coupon_reduce_amount_1d) coupon_reduce_amount,
    sum(order_total_amount_1d) total_amount
from dws_trade_user_order_1d
group by user_id;

每日装载

--td表的数据装载一般为了考虑效率,会分为首日装载和每日装载

--首日装载:直接获取所有的数据做聚合

--每日装载:装载的数据只比前一天多了一天的数据,而前一天的数据已经统计过了。所以就存在重复计算

--改善装载的思路:获取昨天的统计结果+今天新的数据=>做进一步的聚合

insert overwrite table dws_trade_user_order_td partition(dt='2022-06-09')
select
user_id,min(order_date_first),
 max( order_date_last),
    sum(order_count_td) order_count,
    sum(order_num_td) order_num,
    sum(order_original_amount_td) original_amount,
    sum(activity_reduce_amount_td) activity_reduce_amount,
    sum(coupon_reduce_amount_td) coupon_reduce_amount,
    sum(order_total_amount_td) total_amount
from(select
   `user_id`                   ,
    `order_date_first`        ,
    `order_date_last`          ,
    `order_count_td`          ,
    `order_num_td`             ,
    `original_amount_td`       ,
    `activity_reduce_amount_td`,
    `coupon_reduce_amount_td`  ,
    `total_amount_td`         
from
dws_trade_user_order_td
where dt=date_sub('2022-06-08',1)
union all
select 
 `user_id`                   ,
      '2022-06-09'
      '2022-06-09'         ,
    `order_num_1d`             ,
    `original_amount_1d`       ,
    `activity_reduce_amount_1d`,
    `coupon_reduce_amount_1d`  ,
     order_total_amount_1d     
from dws_trade_user_order_1d
where dt='2022-06-09')t
group by user_id

交易域用户粒度加购最近1日汇总表

DROP TABLE IF EXISTS dws_trade_user_cart_add_1d;
CREATE EXTERNAL TABLE dws_trade_user_cart_add_1d
(
    `user_id`           STRING COMMENT '用户ID',
    `cart_add_count_1d` BIGINT COMMENT '最近1日加购次数',
    `cart_add_num_1d`   BIGINT COMMENT '最近1日加购商品件数'
) COMMENT '交易域用户粒度加购最近1日汇总表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_cart_add_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');

--1d表的首日包含历史数据,绝对不能写死

--user+sku
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table dws_trade_user_cart_add_1d partition(dt)
select
    user_id,
    count(*),
    sum(sku_num),
    dt
from dwd_trade_cart_add_inc
group by user_id,dt;

每日装载

insert overwrite table dws_trade_user_cart_add_1d partition(dt='2022-06-09')
select
    user_id,
    count(*),
    sum(sku_num)
from dwd_trade_cart_add_inc
where dt='2022-06-09'
group by user_id;

交易域用户粒度支付最近1日汇总表

DROP TABLE IF EXISTS dws_trade_user_payment_1d;
CREATE EXTERNAL TABLE dws_trade_user_payment_1d
(
    `user_id`           STRING COMMENT '用户ID',
    `payment_count_1d`  BIGINT COMMENT '最近1日支付次数',
    `payment_num_1d`    BIGINT COMMENT '最近1日支付商品件数',
    `payment_amount_1d` DECIMAL(16, 2) COMMENT '最近1日支付金额'
) COMMENT '交易域用户粒度支付最近1日汇总表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_payment_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');

首日装载

set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table dws_trade_user_payment_1d partition(dt)
select
    user_id,
    count(distinct(order_id)),
    sum(sku_num),
    sum(split_payment_amount),
    dt
from dwd_trade_pay_detail_suc_inc
group by user_id,dt;

每日装载

insert overwrite table dws_trade_user_payment_1d partition(dt='2022-06-09')
select
    user_id,
    count(distinct(order_id)),
    sum(sku_num),
    sum(split_payment_amount)
from dwd_trade_pay_detail_suc_inc
where dt='2022-06-09'
group by user_id;

交易域省份粒度订单最近1日汇总表

DROP TABLE IF EXISTS dws_trade_province_order_1d;
CREATE EXTERNAL TABLE dws_trade_province_order_1d
(
    `province_id`               STRING COMMENT '省份ID',
    `province_name`             STRING COMMENT '省份名称',
    `area_code`                 STRING COMMENT '地区编码',
    `iso_code`                  STRING COMMENT '旧版国际标准地区编码',
    `iso_3166_2`                STRING COMMENT '新版国际标准地区编码',
    `order_count_1d`            BIGINT COMMENT '最近1日下单次数',
    `order_original_amount_1d`  DECIMAL(16, 2) COMMENT '最近1日下单原始金额',
    `activity_reduce_amount_1d` DECIMAL(16, 2) COMMENT '最近1日下单活动优惠金额',
    `coupon_reduce_amount_1d`   DECIMAL(16, 2) COMMENT '最近1日下单优惠券优惠金额',
    `order_total_amount_1d`     DECIMAL(16, 2) COMMENT '最近1日下单最终金额'
) COMMENT '交易域省份粒度订单最近1日汇总表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_province_order_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');

首日装载

set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table dws_trade_province_order_1d partition(dt)
select
    province_id,
    province_name,
    area_code,
    iso_code,
    iso_3166_2,
    order_count_1d,
    order_original_amount_1d,
    activity_reduce_amount_1d,
    coupon_reduce_amount_1d,
    order_total_amount_1d,
    dt
from
(
    select
        province_id,
        count(distinct(order_id)) order_count_1d,
        sum(split_original_amount) order_original_amount_1d,
        sum(nvl(split_activity_amount,0)) activity_reduce_amount_1d,
        sum(nvl(split_coupon_amount,0)) coupon_reduce_amount_1d,
        sum(split_total_amount) order_total_amount_1d,
        dt
    from dwd_trade_order_detail_inc
    group by province_id,dt
)o
left join
(
    select
        id,
        province_name,
        area_code,
        iso_code,
        iso_3166_2
    from dim_province_full
    where dt='2022-06-08'
)p
on o.province_id=p.id;

每日装载

insert overwrite table dws_trade_province_order_1d partition(dt='2022-06-09')
select
    province_id,
    province_name,
    area_code,
    iso_code,
    iso_3166_2,
    order_count_1d,
    order_original_amount_1d,
    activity_reduce_amount_1d,
    coupon_reduce_amount_1d,
    order_total_amount_1d
from
(
    select
        province_id,
        count(distinct(order_id)) order_count_1d,
        sum(split_original_amount) order_original_amount_1d,
        sum(nvl(split_activity_amount,0)) activity_reduce_amount_1d,
        sum(nvl(split_coupon_amount,0)) coupon_reduce_amount_1d,
        sum(split_total_amount) order_total_amount_1d
    from dwd_trade_order_detail_inc
    where dt='2022-06-09'
    group by province_id
)o
left join
(
    select
        id,
        province_name,
        area_code,
        iso_code,
        iso_3166_2
    from dim_province_full
    where dt='2022-06-09'
)p
on o.province_id=p.id;

交易域省份粒度订单最近n日汇总表


DROP TABLE IF EXISTS dws_trade_province_order_nd;
CREATE EXTERNAL TABLE dws_trade_province_order_nd
(
    `province_id`                STRING COMMENT '省份ID',
    `province_name`              STRING COMMENT '省份名称',
    `area_code`                  STRING COMMENT '地区编码',
    `iso_code`                   STRING COMMENT '旧版国际标准地区编码',
    `iso_3166_2`                 STRING COMMENT '新版国际标准地区编码',
    `order_count_7d`             BIGINT COMMENT '最近7日下单次数',
    `order_original_amount_7d`   DECIMAL(16, 2) COMMENT '最近7日下单原始金额',
    `activity_reduce_amount_7d`  DECIMAL(16, 2) COMMENT '最近7日下单活动优惠金额',
    `coupon_reduce_amount_7d`    DECIMAL(16, 2) COMMENT '最近7日下单优惠券优惠金额',
    `order_total_amount_7d`      DECIMAL(16, 2) COMMENT '最近7日下单最终金额',
    `order_count_30d`            BIGINT COMMENT '最近30日下单次数',
    `order_original_amount_30d`  DECIMAL(16, 2) COMMENT '最近30日下单原始金额',
    `activity_reduce_amount_30d` DECIMAL(16, 2) COMMENT '最近30日下单活动优惠金额',
    `coupon_reduce_amount_30d`   DECIMAL(16, 2) COMMENT '最近30日下单优惠券优惠金额',
    `order_total_amount_30d`     DECIMAL(16, 2) COMMENT '最近30日下单最终金额'
) COMMENT '交易域省份粒度订单最近n日汇总表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_province_order_nd'
    TBLPROPERTIES ('orc.compress' = 'snappy');
insert overwrite table dws_trade_province_order_nd partition(dt='2022-06-08')
select
    province_id,
    province_name,
    area_code,
    iso_code,
    iso_3166_2,
    sum(if(dt>=date_add('2022-06-08',-6),order_count_1d,0)),
    sum(if(dt>=date_add('2022-06-08',-6),order_original_amount_1d,0)),
    sum(if(dt>=date_add('2022-06-08',-6),activity_reduce_amount_1d,0)),
    sum(if(dt>=date_add('2022-06-08',-6),coupon_reduce_amount_1d,0)),
    sum(if(dt>=date_add('2022-06-08',-6),order_total_amount_1d,0)),
    sum(order_count_1d),
    sum(order_original_amount_1d),
    sum(activity_reduce_amount_1d),
    sum(coupon_reduce_amount_1d),
    sum(order_total_amount_1d)
from dws_trade_province_order_1d
where dt>=date_add('2022-06-08',29)
and dt<='2022-06-08'
group by province_id,province_name,area_code,iso_code,iso_3166_2;

工具域用户优惠券粒度优惠券使用(支付)最近1日汇总表

DROP TABLE IF EXISTS dws_tool_user_coupon_coupon_used_1d;
CREATE EXTERNAL TABLE dws_tool_user_coupon_coupon_used_1d
(
    `user_id`          STRING COMMENT '用户ID',
    `coupon_id`        STRING COMMENT '优惠券ID',
    `coupon_name`      STRING COMMENT '优惠券名称',
    `coupon_type_code` STRING COMMENT '优惠券类型编码',
    `coupon_type_name` STRING COMMENT '优惠券类型名称',
    `benefit_rule`     STRING COMMENT '优惠规则',
    `used_count_1d`    STRING COMMENT '使用(支付)次数'
) COMMENT '工具域用户优惠券粒度优惠券使用(支付)最近1日汇总表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_tool_user_coupon_coupon_used_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');

首日装载

set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table dws_tool_user_coupon_coupon_used_1d partition(dt)
select
    user_id,
    coupon_id,
    coupon_name,
    coupon_type_code,
    coupon_type_name,
    benefit_rule,
    used_count,
    dt
from
(
    select
        dt,
        user_id,
        coupon_id,
        count(*) used_count
    from dwd_tool_coupon_used_inc
    group by dt,user_id,coupon_id
)t1
left join
(
    select
        id,
        coupon_name,
        coupon_type_code,
        coupon_type_name,
        benefit_rule
    from dim_coupon_full
    where dt='2022-06-08'
)t2
on t1.coupon_id=t2.id;

每日装载

insert overwrite table dws_tool_user_coupon_coupon_used_1d partition(dt='2022-06-09')
select
    user_id,
    coupon_id,
    coupon_name,
    coupon_type_code,
    coupon_type_name,
    benefit_rule,
    used_count
from
(
    select
        user_id,
        coupon_id,
        count(*) used_count
    from dwd_tool_coupon_used_inc
    where dt='2022-06-09'
    group by user_id,coupon_id
)t1
left join
(
    select
        id,
        coupon_name,
        coupon_type_code,
        coupon_type_name,
        benefit_rule
    from dim_coupon_full
    where dt='2022-06-09'
)t2
on t1.coupon_id=t2.id;

互动域商品粒度收藏商品最近1日汇总表

DROP TABLE IF EXISTS dws_interaction_sku_favor_add_1d;
CREATE EXTERNAL TABLE dws_interaction_sku_favor_add_1d
(
    `sku_id`             STRING COMMENT 'SKU_ID',
    `sku_name`           STRING COMMENT 'SKU名称',
    `category1_id`       STRING COMMENT '一级品类ID',
    `category1_name`     STRING COMMENT '一级品类名称',
    `category2_id`       STRING COMMENT '二级品类ID',
    `category2_name`     STRING COMMENT '二级品类名称',
    `category3_id`       STRING COMMENT '三级品类ID',
    `category3_name`     STRING COMMENT '三级品类名称',
    `tm_id`              STRING COMMENT '品牌ID',
    `tm_name`            STRING COMMENT '品牌名称',
    `favor_add_count_1d` BIGINT COMMENT '商品被收藏次数'
) COMMENT '互动域商品粒度收藏商品最近1日汇总表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_interaction_sku_favor_add_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');

首日装载

set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table dws_interaction_sku_favor_add_1d partition(dt)
select
    sku_id,
    sku_name,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    tm_id,
    tm_name,
    favor_add_count,
    dt
from
(
    select
        dt,
        sku_id,
        count(*) favor_add_count
    from dwd_interaction_favor_add_inc
    group by dt,sku_id
)favor
left join
(
    select
        id,
        sku_name,
        category1_id,
        category1_name,
        category2_id,
        category2_name,
        category3_id,
        category3_name,
        tm_id,
        tm_name
    from dim_sku_full
    where dt='2022-06-08'
)sku
on favor.sku_id=sku.id;

每日装载

insert overwrite table dws_interaction_sku_favor_add_1d partition(dt='2022-06-09')
select
    sku_id,
    sku_name,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    tm_id,
    tm_name,
    favor_add_count
from
(
    select
        sku_id,
        count(*) favor_add_count
    from dwd_interaction_favor_add_inc
    where dt='2022-06-09'
    group by sku_id
)favor
left join
(
    select
        id,
        sku_name,
        category1_id,
        category1_name,
        category2_id,
        category2_name,
        category3_id,
        category3_name,
        tm_id,
        tm_name
    from dim_sku_full
    where dt='2022-06-09'
)sku
on favor.sku_id=sku.id;

流量域会话粒度页面浏览最近1日汇总表

DROP TABLE IF EXISTS dws_traffic_session_page_view_1d;
CREATE EXTERNAL TABLE dws_traffic_session_page_view_1d
(
    `session_id`     STRING COMMENT '会话ID',
    `mid_id`         string comment '设备ID',
    `brand`          string comment '手机品牌',
    `model`          string comment '手机型号',
    `operate_system` string comment '操作系统',
    `version_code`   string comment 'APP版本号',
    `channel`        string comment '渠道',
    `during_time_1d` BIGINT COMMENT '最近1日浏览时长',
    `page_count_1d`  BIGINT COMMENT '最近1日浏览页面数'
) COMMENT '流量域会话粒度页面浏览最近1日汇总表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_traffic_session_page_view_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');
insert overwrite table dws_traffic_session_page_view_1d partition(dt='2022-06-08')
select
    session_id,
    mid_id,
    brand,
    model,
    operate_system,
    version_code,
    channel,
    sum(during_time),
    count(*)
from dwd_traffic_page_view_inc
where dt='2022-06-08'
group by session_id,mid_id,brand,model,operate_system,version_code,channel;

流量域访客页面粒度页面浏览最近1日汇总表

DROP TABLE IF EXISTS dws_traffic_page_visitor_page_view_1d;
CREATE EXTERNAL TABLE dws_traffic_page_visitor_page_view_1d
(
    `mid_id`         STRING COMMENT '访客ID',
    `brand`          string comment '手机品牌',
    `model`          string comment '手机型号',
    `operate_system` string comment '操作系统',
    `page_id`        STRING COMMENT '页面ID',
    `during_time_1d` BIGINT COMMENT '最近1日浏览时长',
    `view_count_1d`  BIGINT COMMENT '最近1日访问次数'
) COMMENT '流量域访客页面粒度页面浏览最近1日汇总表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_traffic_page_visitor_page_view_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');
insert overwrite table dws_traffic_page_visitor_page_view_1d partition(dt='2022-06-08')
select
    mid_id,
    brand,
    model,
    operate_system,
    page_id,
    sum(during_time),
    count(*)
from dwd_traffic_page_view_inc
where dt='2022-06-08'
group by mid_id,brand,model,operate_system,page_id;

用户域用户粒度登录历史至今汇总表

--活跃
DROP TABLE IF EXISTS dws_user_user_login_td;
CREATE EXTERNAL TABLE dws_user_user_login_td
(
    `user_id`          STRING COMMENT '用户ID',
    `login_date_last`  STRING COMMENT '历史至今末次登录日期',
    `login_date_first` STRING COMMENT '历史至今首次登录日期',
    `login_count_td`   BIGINT COMMENT '历史至今累计登录次数'
) COMMENT '用户域用户粒度登录历史至今汇总表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_user_user_login_td'
    TBLPROPERTIES ('orc.compress' = 'snappy');

首日装载

特别注意:

--登录信息来自于日志表,但是日志表的数据只有8号及以后得数据,没有历史数据

  --mysql数据库中不会保存行为数据,也就是说不会保存登录信息

  --折中的认为,用户注册的时间就是用户首次登录时间,也就是末次登录日期

insert overwrite table dws_user_login_td partition (dt='2022-06-08')
select user_id,max(dt) login_date_last,
min(dt) login_date_first,count(*) login_count_td
from dwd_user_login_inc
group by user_id

首日(先统计昨天的在统计今天的)

insert overwrite table dws_user_login_td partition (dt='2022-06-09')
select 
  user_id,max(lofin_date_last),min(login_date_first),sum(login_count_td)
from(
  select
user_id,
  login_date_last,
  login_date_first,
   login_count_td
from dwd_user_login_td
where dt=date_sub('2022-06-09',1)
union all
select 
   user_id,'2022-06-09','2022-06-09',count(*)
from dwd_user_login_inc
where dt='2022-06-09'
group by user_id
)t group by user_id

所以要改进首日的数据

--ODS层的数据是整个数据仓库的数据源,不能作为直接统计分析的数据源
--统计分析的数据源一般是DIM,DWD层
select
  user_id,max(login_date_last),min(login_date_first),sum(login_count_td)
from
(select id user_id,
        date_format(create_time,'yyyy-MM-dd') login_date_first,
        date_format(create_time,'yyyy-MM-dd') login_date_last
        1 login_count_id,
         from dim_user_zip
         where dt = '9999-12-31' and date_format(create_time,'yyyy-MM-dd'!='2022-06-08') #6月8号之前的数据
union all
 select user_id,'2022-06-08','2022-06-08'
,count(*) login_count_td
from dwd_user_login_inc
where dt='2022-06-08'
group by user_id )t   group by user_id    

数据装载脚本

在node1的/home/bin目录下创建dws_1d_to_dws_td_init.sh

vim dws_1d_to_dws_td_init.sh 
(2)编写如下内容
#!/bin/bash
APP=gmall

if [ -n "$2" ] ;then
   do_date=$2
else 
   echo "请传入日期参数"
   exit
fi

dws_trade_user_order_td="
insert overwrite table ${APP}.dws_trade_user_order_td partition(dt='$do_date')
select
    user_id,
    min(dt) login_date_first,
    max(dt) login_date_last,
    sum(order_count_1d) order_count,
    sum(order_num_1d) order_num,
    sum(order_original_amount_1d) original_amount,
    sum(activity_reduce_amount_1d) activity_reduce_amount,
    sum(coupon_reduce_amount_1d) coupon_reduce_amount,
    sum(order_total_amount_1d) total_amount
from ${APP}.dws_trade_user_order_1d
group by user_id;
"


dws_user_user_login_td="
insert overwrite table ${APP}.dws_user_user_login_td partition (dt = '$do_date')
select u.id                                                         user_id,
       nvl(login_date_last, date_format(create_time, 'yyyy-MM-dd')) login_date_last,
       date_format(create_time, 'yyyy-MM-dd')                       login_date_first,
       nvl(login_count_td, 1)                                       login_count_td
from (
         select id,
                create_time
         from ${APP}.dim_user_zip
         where dt = '9999-12-31'
     ) u
         left join
     (
         select user_id,
                max(dt)  login_date_last,
                count(*) login_count_td
         from ${APP}.dwd_user_login_inc
         group by user_id
     ) l
     on u.id = l.user_id;
"

case $1 in
    "dws_trade_user_order_td" )
        hive -e "$dws_trade_user_order_td"
    ;;
    "dws_user_user_login_td" )
        hive -e "$dws_user_user_login_td"
    ;;
    "all" )
        hive -e "$dws_trade_user_order_td$dws_user_user_login_td"
    ;;
esac
(3)增加脚本执行权限
[atguigu@hadoop102 bin]$ chmod +x dws_1d_to_dws_td_init.sh 
(4)脚本用法
[atguigu@hadoop102 bin]$ dws_1d_to_dws_td_init.sh all 2022-06-08
2)每日数据装载脚本
(1)在hadoop102的/home/atguigu/bin目录下创建dws_1d_to_dws_td.sh
[atguigu@hadoop102 bin]$ vim dws_1d_to_dws_td.sh 
(2)编写如下内容
#!/bin/bash
APP=gmall

# 如果输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
    do_date=$2
else 
    do_date=`date -d "-1 day" +%F`
fi

dws_trade_user_order_td="
insert overwrite table ${APP}.dws_trade_user_order_td partition (dt = '$do_date')
select nvl(old.user_id, new.user_id),
       if(old.user_id is not null, old.order_date_first, '$do_date'),
       if(new.user_id is not null, '$do_date', old.order_date_last),
       nvl(old.order_count_td, 0) + nvl(new.order_count_1d, 0),
       nvl(old.order_num_td, 0) + nvl(new.order_num_1d, 0),
       nvl(old.original_amount_td, 0) + nvl(new.order_original_amount_1d, 0),
       nvl(old.activity_reduce_amount_td, 0) + nvl(new.activity_reduce_amount_1d, 0),
       nvl(old.coupon_reduce_amount_td, 0) + nvl(new.coupon_reduce_amount_1d, 0),
       nvl(old.total_amount_td, 0) + nvl(new.order_total_amount_1d, 0)
from (
         select user_id,
                order_date_first,
                order_date_last,
                order_count_td,
                order_num_td,
                original_amount_td,
                activity_reduce_amount_td,
                coupon_reduce_amount_td,
                total_amount_td
         from ${APP}.dws_trade_user_order_td
         where dt = date_add('$do_date', -1)
     ) old
         full outer join
     (
         select user_id,
                order_count_1d,
                order_num_1d,
                order_original_amount_1d,
                activity_reduce_amount_1d,
                coupon_reduce_amount_1d,
                order_total_amount_1d
         from ${APP}.dws_trade_user_order_1d
         where dt = '$do_date'
     ) new
     on old.user_id = new.user_id;
"

dws_user_user_login_td="
insert overwrite table ${APP}.dws_user_user_login_td partition (dt = '$do_date')
select nvl(old.user_id, new.user_id)                                        user_id,
       if(new.user_id is null, old.login_date_last, '$do_date')           login_date_last,
       if(old.login_date_first is null, '$do_date', old.login_date_first) login_date_first,
       nvl(old.login_count_td, 0) + nvl(new.login_count_1d, 0)              login_count_td
from (
         select user_id,
                login_date_last,
                login_date_first,
                login_count_td
         from ${APP}.dws_user_user_login_td
         where dt = date_add('$do_date', -1)
     ) old
         full outer join
     (
         select user_id,
                count(*) login_count_1d
         from ${APP}.dwd_user_login_inc
         where dt = '$do_date'
         group by user_id
     ) new
     on old.user_id = new.user_id;
"

case $1 in
    "dws_trade_user_order_td" )
        hive -e "$dws_trade_user_order_td"
    ;;
    "dws_user_user_login_td" )
        hive -e "$dws_user_user_login_td"
    ;;
    "all" )
        hive -e "$dws_trade_user_order_td$dws_user_user_login_td"
    ;;
esac
(3)增加脚本执行权限
[atguigu@hadoop102 bin]$ chmod +x dws_1d_to_dws_td.sh 
(4)脚本用法
[atguigu@hadoop102 bin]$ dws_1d_to_dws_td.sh all 2022-06-08
相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
5月前
|
存储 数据采集 JavaScript
深入理解数仓开发(一)数据技术篇之日志采集
深入理解数仓开发(一)数据技术篇之日志采集
|
5月前
|
消息中间件 关系型数据库 Kafka
深入理解数仓开发(二)数据技术篇之数据同步
深入理解数仓开发(二)数据技术篇之数据同步
|
5月前
|
数据挖掘
离线数仓(十)【ADS 层开发】(2)
离线数仓(十)【ADS 层开发】
|
5月前
|
定位技术
离线数仓(九)【DWS 层开发】(3)
离线数仓(九)【DWS 层开发】
|
5月前
|
存储
离线数仓(九)【DWS 层开发】(2)
离线数仓(九)【DWS 层开发】
|
5月前
|
SQL 分布式计算 Java
离线数仓(八)【DWD 层开发】(5)
离线数仓(八)【DWD 层开发】
|
4月前
|
存储 DataWorks Java
DataWorks产品使用合集之开发离线数仓时,需要多个工作空间的情况有哪些
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
5月前
|
消息中间件 存储 Kafka
Flink 实时数仓(二)【ODS 层开发】
Flink 实时数仓(二)【ODS 层开发】