Python基础算法解析:逻辑回归

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: Python基础算法解析:逻辑回归【2月更文挑战第20天】

逻辑回归是一种常用的分类算法,尤其适用于二分类问题。本文将介绍逻辑回归的原理、实现步骤以及如何使用Python进行逻辑回归的编程实践。

什么是逻辑回归?

逻辑回归是一种基于概率的统计分类技术,主要用于二分类问题。尽管名字中含有“回归”,但实质上是一种分类算法。逻辑回归通过将特征值的线性组合传递给一个称为sigmoid函数的激活函数,将线性输出转换为概率输出,从而进行分类。

逻辑回归的原理

逻辑回归的核心在于 sigmoid 函数,它的数学表达式如下:
在这里插入图片描述

这里,$x_0 = 1$,$w_i$ 是特征 $x_i$ 对应的权重。sigmoid 函数将 $z$ 映射到 0 到 1 之间,表示样本属于正类的概率。

逻辑回归的实现步骤

  • 数据预处理:包括数据清洗、特征选择、特征缩放等。
  • 参数初始化:初始化权重 $w$ 和偏置 $b$。
  • 定义sigmoid函数:将线性输出转换为概率输出。
  • 定义损失函数:使用对数损失函数来衡量模型的拟合程度。
  • 梯度下降优化:利用梯度下降算法更新模型参数,使损失函数最小化。
  • 预测:根据模型输出的概率值进行分类预测。

Python实现逻辑回归

下面我们通过Python代码来演示如何实现逻辑回归:

import numpy as np

class LogisticRegression:
    def __init__(self, learning_rate=0.01, num_iterations=1000):
        self.learning_rate = learning_rate
        self.num_iterations = num_iterations
        self.weights = None
        self.bias = None

    def sigmoid(self, z):
        return 1 / (1 + np.exp(-z))

    def initialize_parameters(self, n_features):
        self.weights = np.zeros(n_features)
        self.bias = 0

    def fit(self, X, y):
        n_samples, n_features = X.shape
        self.initialize_parameters(n_features)

        for _ in range(self.num_iterations):
            linear_model = np.dot(X, self.weights) + self.bias
            y_predicted = self.sigmoid(linear_model)

            dw = (1 / n_samples) * np.dot(X.T, (y_predicted - y))
            db = (1 / n_samples) * np.sum(y_predicted - y)

            self.weights -= self.learning_rate * dw
            self.bias -= self.learning_rate * db

    def predict(self, X):
        linear_model = np.dot(X, self.weights) + self.bias
        y_predicted = self.sigmoid(linear_model)
        y_predicted_cls = [1 if i > 0.5 else 0 for i in y_predicted]
        return y_predicted_cls

在上述代码中,我们定义了一个名为LogisticRegression的类,包括了初始化参数、sigmoid函数、参数初始化、拟合、预测等方法。其中,fit方法用于拟合模型,predict方法用于进行预测。

使用逻辑回归进行分类

现在,让我们使用逻辑回归模型对一个简单的数据集进行分类:

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# 生成一个二分类数据集
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)

# 数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 特征缩放
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 训练模型
model = LogisticRegression(learning_rate=0.01, num_iterations=1000)
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = np.mean(y_pred == y_test)
print("Accuracy:", accuracy)

总结

逻辑回归是一种简单而强大的分类算法,在许多实际应用中都表现出色。通过本文的介绍,你已经了解了逻辑回归的原理、实现步骤以及如何使用Python进行编程实践。希望本文能够帮助你更好地理解和应用逻辑回归算法。

目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
20 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
13天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
109 66
|
3天前
|
存储 算法 Serverless
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
|
2天前
|
数据采集 供应链 API
Python爬虫与1688图片搜索API接口:深度解析与显著收益
在电子商务领域,数据是驱动业务决策的核心。阿里巴巴旗下的1688平台作为全球领先的B2B市场,提供了丰富的API接口,特别是图片搜索API(`item_search_img`),允许开发者通过上传图片搜索相似商品。本文介绍如何结合Python爬虫技术高效利用该接口,提升搜索效率和用户体验,助力企业实现自动化商品搜索、库存管理优化、竞品监控与定价策略调整等,显著提高运营效率和市场竞争力。
20 3
|
17天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
53 20
|
9天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
10天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
15天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
47 5
|
13天前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
21天前
|
数据挖掘 vr&ar C++
让UE自动运行Python脚本:实现与实例解析
本文介绍如何配置Unreal Engine(UE)以自动运行Python脚本,提高开发效率。通过安装Python、配置UE环境及使用第三方插件,实现Python与UE的集成。结合蓝图和C++示例,展示自动化任务处理、关卡生成及数据分析等应用场景。
88 5