Python基础算法解析:逻辑回归

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
大数据开发治理平台 DataWorks,不限时长
简介: Python基础算法解析:逻辑回归【2月更文挑战第20天】

逻辑回归是一种常用的分类算法,尤其适用于二分类问题。本文将介绍逻辑回归的原理、实现步骤以及如何使用Python进行逻辑回归的编程实践。

什么是逻辑回归?

逻辑回归是一种基于概率的统计分类技术,主要用于二分类问题。尽管名字中含有“回归”,但实质上是一种分类算法。逻辑回归通过将特征值的线性组合传递给一个称为sigmoid函数的激活函数,将线性输出转换为概率输出,从而进行分类。

逻辑回归的原理

逻辑回归的核心在于 sigmoid 函数,它的数学表达式如下:
在这里插入图片描述

这里,$x_0 = 1$,$w_i$ 是特征 $x_i$ 对应的权重。sigmoid 函数将 $z$ 映射到 0 到 1 之间,表示样本属于正类的概率。

逻辑回归的实现步骤

  • 数据预处理:包括数据清洗、特征选择、特征缩放等。
  • 参数初始化:初始化权重 $w$ 和偏置 $b$。
  • 定义sigmoid函数:将线性输出转换为概率输出。
  • 定义损失函数:使用对数损失函数来衡量模型的拟合程度。
  • 梯度下降优化:利用梯度下降算法更新模型参数,使损失函数最小化。
  • 预测:根据模型输出的概率值进行分类预测。

Python实现逻辑回归

下面我们通过Python代码来演示如何实现逻辑回归:

import numpy as np

class LogisticRegression:
    def __init__(self, learning_rate=0.01, num_iterations=1000):
        self.learning_rate = learning_rate
        self.num_iterations = num_iterations
        self.weights = None
        self.bias = None

    def sigmoid(self, z):
        return 1 / (1 + np.exp(-z))

    def initialize_parameters(self, n_features):
        self.weights = np.zeros(n_features)
        self.bias = 0

    def fit(self, X, y):
        n_samples, n_features = X.shape
        self.initialize_parameters(n_features)

        for _ in range(self.num_iterations):
            linear_model = np.dot(X, self.weights) + self.bias
            y_predicted = self.sigmoid(linear_model)

            dw = (1 / n_samples) * np.dot(X.T, (y_predicted - y))
            db = (1 / n_samples) * np.sum(y_predicted - y)

            self.weights -= self.learning_rate * dw
            self.bias -= self.learning_rate * db

    def predict(self, X):
        linear_model = np.dot(X, self.weights) + self.bias
        y_predicted = self.sigmoid(linear_model)
        y_predicted_cls = [1 if i > 0.5 else 0 for i in y_predicted]
        return y_predicted_cls

在上述代码中,我们定义了一个名为LogisticRegression的类,包括了初始化参数、sigmoid函数、参数初始化、拟合、预测等方法。其中,fit方法用于拟合模型,predict方法用于进行预测。

使用逻辑回归进行分类

现在,让我们使用逻辑回归模型对一个简单的数据集进行分类:

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# 生成一个二分类数据集
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)

# 数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 特征缩放
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 训练模型
model = LogisticRegression(learning_rate=0.01, num_iterations=1000)
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = np.mean(y_pred == y_test)
print("Accuracy:", accuracy)

总结

逻辑回归是一种简单而强大的分类算法,在许多实际应用中都表现出色。通过本文的介绍,你已经了解了逻辑回归的原理、实现步骤以及如何使用Python进行编程实践。希望本文能够帮助你更好地理解和应用逻辑回归算法。

目录
相关文章
|
2天前
|
存储 算法 安全
|
3天前
|
存储 SQL 缓存
阿里云大学考试python中级题目及解析-python中级
阿里云大学考试python中级题目及解析-python中级
|
3天前
|
算法 数据可视化 Python
Python用MCMC马尔科夫链蒙特卡洛、拒绝抽样和Metropolis-Hastings采样算法
Python用MCMC马尔科夫链蒙特卡洛、拒绝抽样和Metropolis-Hastings采样算法
16 6
|
4天前
|
机器学习/深度学习 算法 搜索推荐
Python用机器学习算法进行因果推断与增量、增益模型Uplift Modeling智能营销模型
Python用机器学习算法进行因果推断与增量、增益模型Uplift Modeling智能营销模型
31 12
|
8天前
|
数据采集 机器学习/深度学习 数据挖掘
Python数据清洗与预处理面试题解析
【4月更文挑战第17天】本文介绍了Python数据清洗与预处理在面试中的常见问题,包括Pandas基础操作、异常值处理和特征工程。通过示例代码展示了数据读取、筛选、合并、分组统计、离群点检测、缺失值和重复值处理、特征缩放、编码、转换和降维。强调了易错点,如忽视数据质量检查、盲目处理数据、数据隐私保护、过度简化特征关系和忽视模型输入要求。掌握这些技能和策略将有助于在面试中脱颖而出。
24 8
|
10天前
|
算法 数据可视化 Python
Python贝叶斯推断Metropolis-Hastings(M-H)MCMC采样算法的实现
Python贝叶斯推断Metropolis-Hastings(M-H)MCMC采样算法的实现
14 0
|
10天前
|
数据可视化 算法 数据挖掘
PYTHON实现谱聚类算法和改变聚类簇数结果可视化比较
PYTHON实现谱聚类算法和改变聚类簇数结果可视化比较
|
10天前
|
机器学习/深度学习 存储 算法
PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化
PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化
31 7
|
11天前
|
调度 Python
Python多线程、多进程与协程面试题解析
【4月更文挑战第14天】Python并发编程涉及多线程、多进程和协程。面试中,对这些概念的理解和应用是评估候选人的重要标准。本文介绍了它们的基础知识、常见问题和应对策略。多线程在同一进程中并发执行,多进程通过进程间通信实现并发,协程则使用`asyncio`进行轻量级线程控制。面试常遇到的问题包括并发并行混淆、GIL影响多线程性能、进程间通信不当和协程异步IO理解不清。要掌握并发模型,需明确其适用场景,理解GIL、进程间通信和协程调度机制。
28 0
|
11天前
|
API Python
Python模块化编程:面试题深度解析
【4月更文挑战第14天】了解Python模块化编程对于构建大型项目至关重要,它涉及代码组织、复用和维护。本文深入探讨了模块、包、导入机制、命名空间和作用域等基础概念,并列举了面试中常见的模块导入混乱、不适当星号导入等问题,强调了避免循环依赖、合理使用`__init__.py`以及理解模块作用域的重要性。掌握这些知识将有助于在面试中自信应对模块化编程的相关挑战。
21 0

热门文章

最新文章

推荐镜像

更多