Flink CDC产品常见问题之用superset连接starrocks报错如何解决

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。

问题一:Flink CDC里谁试过用superset连接starrocks的,报错要怎么办啊?

Flink CDC里谁试过用superset连接starrocks的,官网的方法好像不太行,报错要怎么办啊?



参考答案:

确保你在Superset的数据库连接设置中输入了正确的StarRocks主机地址、端口、数据库名、用户名和密码。

如果StarRocks集群仅允许特定的IP访问,确保Superset服务器的IP地址被允许。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599194?spm=a2c6h.12873639.article-detail.67.50e24378TRW91E



问题二:flink cdc oracle 这个报错有遇到过的吗?

flink cdc oracle 这个报错有遇到过的吗?



参考答案:

根据提供的信息,报错信息显示为 "ORA-00600: internal error code, arguments: [krvrdGetUID: 2], [18446744073709551614],[],[],[],[],[],[],[],[],[],[]},[],[],[],[],[]},[],[],[],[],[]},[],[]},[],[],[],[]},[],[],[]},[]},at oracle.jdbc.driver.T4CTTIoer11.processError(T4CTTIoer11.Java:509)"。这个错误是Oracle数据库的内部错误代码,具体的错误原因需要进一步分析。

一般来说,当遇到ORA-00600这样的内部错误时,可以尝试以下步骤进行排查:

  1. 检查数据库日志:查看Oracle数据库的alert日志或trace文件,这些文件通常包含有关错误的详细信息。
  2. 检查网络连接:确保Flink CDC与Oracle数据库之间的网络连接正常,没有中断或延迟。
  3. 检查数据库配置:确认Oracle数据库的配置是否正确,包括内存、参数设置等。
  4. 检查驱动程序和版本:确保使用的JDBC驱动程序与Oracle数据库版本兼容,并且是最新版本。
  5. 检查SQL语句:仔细检查执行的SQL语句,特别是涉及表名、列名、数据类型等方面的内容,确保没有语法错误或逻辑错误。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599193?spm=a2c6h.12873639.article-detail.68.50e24378TRW91E



问题三:Flink CDC里 任务重启由rocksdb状态后端改为hashmap行不行呢?

Flink CDC里 任务重启由rocksdb状态后端改为hashmap行不行呢?



参考答案:

Apache Flink 的任务在重启时更改状态后端,从 RocksDBStateBackend 更改为 HashMapStateBackend 并不是一个推荐的做法,且实际操作中可能不会按照预期工作。原因如下:1. 状态一致性:•当Flink作业使用RocksDBStateBackend持久化了状态,并在故障恢复时需要从检查点或者保存点进行恢复,这些状态是以RocksDB存储格式保存的。•如果直接切换到HashMapStateBackend,由于两种后端的数据结构和持久化方式完全不同,HashMapStateBackend无法直接读取RocksDB格式的状态数据。2. 内存限制:•RocksDB可以将大量状态数据存储在磁盘上,适合处理大规模状态数据的场景。•HashMapStateBackend则将状态数据完全保留在JVM堆内存中,如果状态数据量较大,可能会导致内存溢出(OOM)问题。3. 作业设计与配置:•通常在开发阶段确定了状态后端之后,在生产环境中不建议随意变更,因为这会改变整个作业的状态管理和容错机制。若确实需要更换状态后端,正确的做法是:•先停止当前使用RocksDBStateBackend的任务。•将之前保存的状态以兼容的方式迁移到新的状态后端所使用的格式。•配置新作业使用HashMapStateBackend,并设置好相应的内存限制策略。•启动新的作业,并从迁移后的状态进行恢复。但是请注意,对于大型或长时间运行的流处理作业,HashMapStateBackend由于其内存局限性,往往不适合用于处理大状态的情况。在生产环境部署时,应根据应用的实际需求选择合适的状态后端。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599192?spm=a2c6h.12873639.article-detail.69.50e24378TRW91E



问题四:有没有用flink cdc做过mysql整库的实时同步?

有没有大神用flink cdc做过mysql整库的实时同步?



参考答案:

有使用Flink CDC实现MySQL整库的实时同步的案例

Flink CDC(Change Data Capture)是Apache Flink中用于捕获数据库变化数据的一项技术,它能够实时地捕获和同步数据库中的数据变更。以下是一些关于使用Flink CDC进行MySQL整库实时同步的实践案例和相关信息:

  1. MysqlCDC项目:有一个基于Flink CDC的项目,通过datastream方式实现了MySQL之间的全量和增量同步。这个项目是用Java编写的,用户只需要配置好源数据库和目标数据库的信息,运行项目中的main函数,就能实现多库多表的同步。
  2. 数据同步到其他存储系统:在许多场景中,当数据库的数据发生变化时,可能需要将这些变化同步到其他存储中间件,如Kafka、Elasticsearch等。使用Flink CDC可以实现这种类型的数据同步,减少业务代码与数据同步操作的耦合,从而降低维护成本并减少代码冗余。
  3. 环境准备和配置:为了实现实时同步,需要准备相应的环境,包括安装JDK、Flink以及MySQL等。还需要创建用于同步的源数据库和目标数据库,并进行适当的配置以完成同步任务。
  4. 实时同步到Doris:有实践案例介绍了如何使用Flink CDC版本2.4将MySQL数据库实时同步到Doris数据库。这包括了环境的准备、Flink CDC的配置、数据同步流程以及需要注意的事项。

综上所述,Flink CDC确实可以用来做MySQL整库的实时同步,并且已经有相关的实践案例和项目。这些案例和项目展示了Flink CDC在数据同步方面的能力和实用性。在实施同步时,需要考虑到环境的配置、数据的一致性要求以及同步策略等多个方面,以确保同步过程的高效和可靠。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/598971?spm=a2c6h.12873639.article-detail.70.50e24378TRW91E



问题五:flink CDC中,同步任务重并没有同步mysql某张表,如果未被同步的表结构变更了怎么办?

flink CDC中,同步任务重并没有同步mysql某张表,如果未被同步的表结构变更了,flinkCDC 同步任务也会报错。按理说应该不会,是不是可以做些设置呢?



参考答案:

3.0.1 修复了。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/598742?spm=a2c6h.12873639.article-detail.71.50e24378TRW91E

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
5月前
|
存储 监控 数据挖掘
京东物流基于Flink & StarRocks的湖仓建设实践
本文整理自京东物流高级数据开发工程师梁宝彬在Flink Forward Asia 2024的分享,聚焦实时湖仓的探索与建设、应用实践、问题思考及未来展望。内容涵盖京东物流通过Flink和Paimon等技术构建实时湖仓体系的过程,解决复杂业务场景下的数据分析挑战,如多维OLAP分析、大屏监控等。同时,文章详细介绍了基于StarRocks的湖仓一体方案,优化存储成本并提升查询效率,以及存算分离的应用实践。最后,对未来数据服务的发展方向进行了展望,计划推广长周期数据存储服务和原生数据湖建设,进一步提升数据分析能力。
485 1
京东物流基于Flink & StarRocks的湖仓建设实践
|
4月前
|
数据采集 SQL canal
Amoro + Flink CDC 数据融合入湖新体验
本文总结了货拉拉高级大数据开发工程师陈政羽在Flink Forward Asia 2024上的分享,聚焦Flink CDC在货拉拉的应用与优化。内容涵盖CDC应用现状、数据入湖新体验、入湖优化及未来规划。文中详细分析了CDC在多业务场景中的实践,包括数据采集平台化、稳定性建设,以及面临的文件碎片化、Schema演进等挑战。同时介绍了基于Apache Amoro的湖仓融合架构,通过自优化服务解决小文件问题,提升数据新鲜度与读写平衡。未来将深化Paimon与Amoro的结合,打造更高效的入湖生态与自动化优化方案。
233 1
Amoro + Flink CDC 数据融合入湖新体验
|
4月前
|
SQL 关系型数据库 MySQL
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
Apache Flink CDC 3.4.0 版本正式发布!经过4个月的开发,此版本强化了对高频表结构变更的支持,新增 batch 执行模式和 Apache Iceberg Sink 连接器,可将数据库数据全增量实时写入 Iceberg 数据湖。51位贡献者完成了259次代码提交,优化了 MySQL、MongoDB 等连接器,并修复多个缺陷。未来 3.5 版本将聚焦脏数据处理、数据限流等能力及 AI 生态对接。欢迎下载体验并提出反馈!
819 1
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
|
5月前
|
SQL API Apache
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
665 12
Dinky 和 Flink CDC 在实时整库同步的探索之路
|
3月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
6月前
|
Oracle 关系型数据库 Java
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
本文介绍通过Flink CDC实现Oracle数据实时同步至崖山数据库(YashanDB)的方法,支持全量与增量同步,并涵盖新增、修改和删除的DML操作。内容包括环境准备(如JDK、Flink版本等)、Oracle日志归档启用、用户权限配置、增量日志记录设置、元数据迁移、Flink安装与配置、生成Flink SQL文件、Streampark部署,以及创建和启动实时同步任务的具体步骤。适合需要跨数据库实时同步方案的技术人员参考。
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
|
6月前
|
关系型数据库 MySQL 数据库
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
TIS 是一款基于Web-UI的开源大数据集成工具,通过与人大金仓Kingbase的深度整合,提供高效、灵活的实时数据集成方案。它支持增量数据监听和实时写入,兼容MySQL、PostgreSQL和Oracle模式,无需编写复杂脚本,操作简单直观,特别适合非专业开发人员使用。TIS率先实现了Kingbase CDC连接器的整合,成为业界首个开箱即用的Kingbase CDC数据同步解决方案,助力企业数字化转型。
1119 5
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
|
6月前
|
存储 SQL Java
Flink CDC + Hologres高性能数据同步优化实践
本文整理自阿里云高级技术专家胡一博老师在Flink Forward Asia 2024数据集成(二)专场的分享,主要内容包括:1. Hologres介绍:实时数据仓库,支持毫秒级写入和高QPS查询;2. 写入优化:通过改进缓冲队列、连接池和COPY模式提高吞吐量和降低延迟;3. 消费优化:优化离线场景和分区表的消费逻辑,提升性能和资源利用率;4. 未来展望:进一步简化用户操作,支持更多DDL操作及全增量消费。Hologres 3.0全新升级为一体化实时湖仓平台,提供多项新功能并降低使用成本。
511 1
Flink CDC + Hologres高性能数据同步优化实践
|
Oracle 关系型数据库 MySQL
flink cdc 插件问题之报错如何解决
Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。
|
Java 关系型数据库 MySQL
Flink CDC有见这个报错不?
【2月更文挑战第29天】Flink CDC有见这个报错不?
209 2

相关产品

  • 实时计算 Flink版