实时计算 Flink版产品使用问题之连接的PG表长时间无数据写入,WAL日志持续增长,该如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink source这是不是还是单并行度消费,其他并行度消费不到?

Flink source这是不是还是单并行度消费,其他并行度消费不到?



参考答案:

源端一般都有参数进行控制拉取的数据量大小,有的话,可以调大一点,如果不满足你的需求的话,也可以提个工单具体问一下。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/622000



问题二:Flink pg cdc 如果pg表一天没有数据写入会导致pg的wal日志越来越大有什么解决思路么?

Flink pg cdc 如果pg表一天没有数据写入 会导致pg的wal日志越来越大 有什么解决思路么?



参考答案:

当使用Flink PG CDC连接器处理PostgreSQL数据库时,若表在某一天没有数据写入,理论上不会导致WAL(Write-Ahead Log)日志大小持续增大。WAL主要用于记录所有数据库更改,以确保事务的持久性和可恢复性。即便没有新的数据写入,数据库的日常运维操作,如检查点创建、自动清理策略的缺失或配置不当,仍可能导致WAL文件累积。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/639666



问题三:Flink out文件里面的内容再哪里定义啊?为什么我终端的东西没有写进去?

Flink out文件里面的内容再哪里定义啊?为什么我终端的东西没有写进去?



参考答案:

在Apache Flink中,输出文件(如你提到的"out"文件)的内容通常是在你的Flink作业中通过定义数据流的处理逻辑来确定的。Flink作业可以读取输入数据,进行一系列转换(transformations),并最终写入到输出目标中,比如文件、数据库或其他存储系统。

如果你发现终端(控制台)的输出没有写入到文件中,这可能是因为几个原因:

输出目标未正确配置:

确保你的Flink作业中配置了正确的输出路径和输出方式。例如,如果你使用的是DataStream API,你可能会使用writeAsText(), writeUsingOutputFormat(), 或者addSink()方法来指定输出。

对于文件输出,通常我们会使用BucketingSink或FileSink(在Flink 1.11及更高版本中引入)来管理文件的写入。

并行度问题:

Flink作业的并行度(parallelism)可能影响数据的输出。如果你的作业配置了多个并行任务,但输出配置没有正确处理并行写入,可能会导致数据写入到不同的文件或文件被覆盖。

异常处理:

确保你的Flink作业没有遇到异常或错误,这些可能会阻止数据的正常处理和输出。

查看日志:

查看Flink作业的日志,这可能会给出为什么数据没有写入文件的线索。你可以检查作业管理器的日志(如YARN、Kubernetes等)或Flink集群的日志文件。

Flink版本和配置:

确保你使用的Flink版本支持你的输出配置。不同的Flink版本可能在API或配置方面有所不同。

检查Flink的配置文件(如flink-conf.yaml),看是否有与输出相关的配置被错误地设置。

代码示例:

以下是一个简单的Flink作业示例,该作业读取文本文件,进行一些转换,并将结果写入到另一个文本文件中:



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/626070



问题四:flink main方法configuration传的参数为啥在process里的open拿不到?

咱们的flink main 方法configuration 传的参数为啥在process里的open 方法拿不到啊?



参考答案:

在 Apache Flink 中,当你通过 main 方法启动一个 Flink 作业,并使用 Configuration 对象来传递参数时,这些参数通常不会直接在 RichFunction(如 RichMapFunction, RichFlatMapFunction, RichProcessFunction 等)的 open 方法中通过 Configuration 对象访问到。Configuration 对象主要用于 Flink 框架内部的配置,而不是用于在用户定义的函数之间传递参数。

在 Flink 中,向用户定义的函数传递参数通常有以下几种方式:

使用 RuntimeContext:对于 RichFunction,你可以通过覆盖 open(Configuration parameters) 方法并在其中访问 getRuntimeContext().getExecutionConfig().getGlobalJobParameters() 来获取全局作业参数。但请注意,这里获取的不是 Configuration 对象,而是 GlobalJobParameters,它通常包含通过命令行传递的参数。

使用 BroadcastState 或 BroadcastProcessFunction:如果你需要在多个并行实例之间共享一些配置或状态,可以使用广播状态。但请注意,这通常用于更高级的场景。

使用函数参数:直接在函数的构造函数中传递参数,然后在 open 方法中使用它们。

使用 Flink 表的参数化查询:如果你在使用 Flink SQL 或 Table API,可以通过参数化查询来传递参数。

下面是一个简单的示例,演示如何在 Flink 的 RichProcessFunction 中使用全局作业参数:



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/627748



问题五:Flink k8s HA 锁资源在etcd偶发出现写失败 时候,请教一下这个机制有优化的配置吗?

Flink k8s HA 锁资源在etcd偶发出现写失败 时候,会导致任务批量HA重启。

请教一下这个机制有优化的配置吗? 比如锁可以重试几次后 再切换嘛?



参考答案:

K8S ha 是有个配置的

调一下这几个配置

high-availability.kubernetes.leader-election.retry-period: 10 s 这个也调大一点



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/623563

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
27天前
|
存储 监控 数据处理
flink 向doris 数据库写入数据时出现背压如何排查?
本文介绍了如何确定和解决Flink任务向Doris数据库写入数据时遇到的背压问题。首先通过Flink Web UI和性能指标监控识别背压,然后从Doris数据库性能、网络连接稳定性、Flink任务数据处理逻辑及资源配置等方面排查原因,并通过分析相关日志进一步定位问题。
157 61
|
2月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
2月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
80 1
|
2月前
|
SQL 分布式计算 大数据
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(一)
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(一)
58 0
|
SQL 监控
日志服务数据加工最佳实践: 从RDS-MySQL拉取数据做富化
本篇覆盖日志服务数据加工最佳实践: 从RDS-MySQL拉取数据做富化的各种场景, 包括定期刷新拉取所有, 拉取部分数据, 拉取后再过滤数据, 调整返回表格结构等
1856 0
|
1月前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
286 30
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
10天前
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
|
2月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
318 3
|
20天前
|
存储 监控 安全
什么是事件日志管理系统?事件日志管理系统有哪些用处?
事件日志管理系统是IT安全的重要工具,用于集中收集、分析和解释来自组织IT基础设施各组件的事件日志,如防火墙、路由器、交换机等,帮助提升网络安全、实现主动威胁检测和促进合规性。系统支持多种日志类型,包括Windows事件日志、Syslog日志和应用程序日志,通过实时监测、告警及可视化分析,为企业提供强大的安全保障。然而,实施过程中也面临数据量大、日志管理和分析复杂等挑战。EventLog Analyzer作为一款高效工具,不仅提供实时监测与告警、可视化分析和报告功能,还支持多种合规性报告,帮助企业克服挑战,提升网络安全水平。
|
2月前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1698 14

相关产品

  • 实时计算 Flink版
  • 下一篇
    DataWorks