实时计算 Flink版产品使用问题之连接的PG表长时间无数据写入,WAL日志持续增长,该如何解决

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink source这是不是还是单并行度消费,其他并行度消费不到?

Flink source这是不是还是单并行度消费,其他并行度消费不到?



参考答案:

源端一般都有参数进行控制拉取的数据量大小,有的话,可以调大一点,如果不满足你的需求的话,也可以提个工单具体问一下。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/622000



问题二:Flink pg cdc 如果pg表一天没有数据写入会导致pg的wal日志越来越大有什么解决思路么?

Flink pg cdc 如果pg表一天没有数据写入 会导致pg的wal日志越来越大 有什么解决思路么?



参考答案:

当使用Flink PG CDC连接器处理PostgreSQL数据库时,若表在某一天没有数据写入,理论上不会导致WAL(Write-Ahead Log)日志大小持续增大。WAL主要用于记录所有数据库更改,以确保事务的持久性和可恢复性。即便没有新的数据写入,数据库的日常运维操作,如检查点创建、自动清理策略的缺失或配置不当,仍可能导致WAL文件累积。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/639666



问题三:Flink out文件里面的内容再哪里定义啊?为什么我终端的东西没有写进去?

Flink out文件里面的内容再哪里定义啊?为什么我终端的东西没有写进去?



参考答案:

在Apache Flink中,输出文件(如你提到的"out"文件)的内容通常是在你的Flink作业中通过定义数据流的处理逻辑来确定的。Flink作业可以读取输入数据,进行一系列转换(transformations),并最终写入到输出目标中,比如文件、数据库或其他存储系统。

如果你发现终端(控制台)的输出没有写入到文件中,这可能是因为几个原因:

输出目标未正确配置:

确保你的Flink作业中配置了正确的输出路径和输出方式。例如,如果你使用的是DataStream API,你可能会使用writeAsText(), writeUsingOutputFormat(), 或者addSink()方法来指定输出。

对于文件输出,通常我们会使用BucketingSink或FileSink(在Flink 1.11及更高版本中引入)来管理文件的写入。

并行度问题:

Flink作业的并行度(parallelism)可能影响数据的输出。如果你的作业配置了多个并行任务,但输出配置没有正确处理并行写入,可能会导致数据写入到不同的文件或文件被覆盖。

异常处理:

确保你的Flink作业没有遇到异常或错误,这些可能会阻止数据的正常处理和输出。

查看日志:

查看Flink作业的日志,这可能会给出为什么数据没有写入文件的线索。你可以检查作业管理器的日志(如YARN、Kubernetes等)或Flink集群的日志文件。

Flink版本和配置:

确保你使用的Flink版本支持你的输出配置。不同的Flink版本可能在API或配置方面有所不同。

检查Flink的配置文件(如flink-conf.yaml),看是否有与输出相关的配置被错误地设置。

代码示例:

以下是一个简单的Flink作业示例,该作业读取文本文件,进行一些转换,并将结果写入到另一个文本文件中:



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/626070



问题四:flink main方法configuration传的参数为啥在process里的open拿不到?

咱们的flink main 方法configuration 传的参数为啥在process里的open 方法拿不到啊?



参考答案:

在 Apache Flink 中,当你通过 main 方法启动一个 Flink 作业,并使用 Configuration 对象来传递参数时,这些参数通常不会直接在 RichFunction(如 RichMapFunction, RichFlatMapFunction, RichProcessFunction 等)的 open 方法中通过 Configuration 对象访问到。Configuration 对象主要用于 Flink 框架内部的配置,而不是用于在用户定义的函数之间传递参数。

在 Flink 中,向用户定义的函数传递参数通常有以下几种方式:

使用 RuntimeContext:对于 RichFunction,你可以通过覆盖 open(Configuration parameters) 方法并在其中访问 getRuntimeContext().getExecutionConfig().getGlobalJobParameters() 来获取全局作业参数。但请注意,这里获取的不是 Configuration 对象,而是 GlobalJobParameters,它通常包含通过命令行传递的参数。

使用 BroadcastState 或 BroadcastProcessFunction:如果你需要在多个并行实例之间共享一些配置或状态,可以使用广播状态。但请注意,这通常用于更高级的场景。

使用函数参数:直接在函数的构造函数中传递参数,然后在 open 方法中使用它们。

使用 Flink 表的参数化查询:如果你在使用 Flink SQL 或 Table API,可以通过参数化查询来传递参数。

下面是一个简单的示例,演示如何在 Flink 的 RichProcessFunction 中使用全局作业参数:



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/627748



问题五:Flink k8s HA 锁资源在etcd偶发出现写失败 时候,请教一下这个机制有优化的配置吗?

Flink k8s HA 锁资源在etcd偶发出现写失败 时候,会导致任务批量HA重启。

请教一下这个机制有优化的配置吗? 比如锁可以重试几次后 再切换嘛?



参考答案:

K8S ha 是有个配置的

调一下这几个配置

high-availability.kubernetes.leader-election.retry-period: 10 s 这个也调大一点



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/623563

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
2月前
|
SQL 人工智能 监控
SLS Copilot 实践:基于 SLS 灵活构建 LLM 应用的数据基础设施
本文将分享我们在构建 SLS SQL Copilot 过程中的工程实践,展示如何基于阿里云 SLS 打造一套完整的 LLM 应用数据基础设施。
642 55
|
2月前
|
数据采集 运维 监控
不重启、不重写、不停机:SLS 软删除如何实现真正的“无感数据急救”?
SLS 全新推出的「软删除」功能,以接近索引查询的性能,解决了数据应急删除与脏数据治理的痛点。2 分钟掌握这一数据管理神器。
233 26
|
3月前
|
存储 缓存 Apache
StarRocks+Paimon 落地阿里日志采集:万亿级实时数据秒级查询
A+流量分析平台是阿里集团统一的全域流量数据分析平台,致力于通过埋点、采集、计算构建流量数据闭环,助力业务提升流量转化。面对万亿级日志数据带来的写入与查询挑战,平台采用Flink+Paimon+StarRocks技术方案,实现高吞吐写入与秒级查询,优化存储成本与扩展性,提升日志分析效率。
472 1
|
6月前
|
存储 缓存 Apache
StarRocks+Paimon 落地阿里日志采集:万亿级实时数据秒级查询
本文介绍了阿里集团A+流量分析平台的日志查询优化方案,针对万亿级日志数据的写入与查询挑战,提出基于Flink、Paimon和StarRocks的技术架构。通过Paimon存储日志数据,结合StarRocks高效计算能力,实现秒级查询性能。具体包括分桶表设计、数据缓存优化及文件大小控制等措施,解决高并发、大数据量下的查询效率问题。最终,日志查询耗时从分钟级降至秒级,显著提升业务响应速度,并为未来更低存储成本、更高性能及更多业务场景覆盖奠定基础。
|
7月前
|
SQL 监控 数据挖掘
SLS 重磅升级:超大规模数据实现完全精确分析
SLS 全新推出的「SQL 完全精确」模式,通过“限”与“换”的策略切换,在快速分析与精确计算之间实现平衡,满足用户对于超大数据规模分析结果精确的刚性需求。标志着其在超大规模日志数据分析领域再次迈出了重要的一步。
558 117
|
3月前
|
存储 关系型数据库 数据库
【赵渝强老师】PostgreSQL数据库的WAL日志与数据写入的过程
PostgreSQL中的WAL(预写日志)是保证数据完整性的关键技术。在数据修改前,系统会先将日志写入WAL,确保宕机时可通过日志恢复数据。它减少了磁盘I/O,提升了性能,并支持手动切换日志文件。WAL文件默认存储在pg_wal目录下,采用16进制命名规则。此外,PostgreSQL提供pg_waldump工具解析日志内容。
312 0
|
3月前
|
数据采集 运维 监控
|
5月前
|
存储 NoSQL MongoDB
Docker中安装MongoDB并配置数据、日志、配置文件持久化。
现在,你有了一个运行在Docker中的MongoDB,它拥有自己的小空间,对高楼大厦的崩塌视而不见(会话丢失和数据不持久化的问题)。这个MongoDB的数据、日志、配置文件都会妥妥地保存在你为它精心准备的地方,天旋地转,它也不会失去一丁点儿宝贵的记忆(即使在容器重启后)。
626 4
|
8月前
|
监控 Shell Linux
Android调试终极指南:ADB安装+多设备连接+ANR日志抓取全流程解析,覆盖环境变量配置/多设备调试/ANR日志分析全流程,附Win/Mac/Linux三平台解决方案
ADB(Android Debug Bridge)是安卓开发中的重要工具,用于连接电脑与安卓设备,实现文件传输、应用管理、日志抓取等功能。本文介绍了 ADB 的基本概念、安装配置及常用命令。包括:1) 基本命令如 `adb version` 和 `adb devices`;2) 权限操作如 `adb root` 和 `adb shell`;3) APK 操作如安装、卸载应用;4) 文件传输如 `adb push` 和 `adb pull`;5) 日志记录如 `adb logcat`;6) 系统信息获取如屏幕截图和录屏。通过这些功能,用户可高效调试和管理安卓设备。

相关产品

  • 实时计算 Flink版