实时计算 Flink版产品使用问题之连接的PG表长时间无数据写入,WAL日志持续增长,该如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink source这是不是还是单并行度消费,其他并行度消费不到?

Flink source这是不是还是单并行度消费,其他并行度消费不到?



参考答案:

源端一般都有参数进行控制拉取的数据量大小,有的话,可以调大一点,如果不满足你的需求的话,也可以提个工单具体问一下。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/622000



问题二:Flink pg cdc 如果pg表一天没有数据写入会导致pg的wal日志越来越大有什么解决思路么?

Flink pg cdc 如果pg表一天没有数据写入 会导致pg的wal日志越来越大 有什么解决思路么?



参考答案:

当使用Flink PG CDC连接器处理PostgreSQL数据库时,若表在某一天没有数据写入,理论上不会导致WAL(Write-Ahead Log)日志大小持续增大。WAL主要用于记录所有数据库更改,以确保事务的持久性和可恢复性。即便没有新的数据写入,数据库的日常运维操作,如检查点创建、自动清理策略的缺失或配置不当,仍可能导致WAL文件累积。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/639666



问题三:Flink out文件里面的内容再哪里定义啊?为什么我终端的东西没有写进去?

Flink out文件里面的内容再哪里定义啊?为什么我终端的东西没有写进去?



参考答案:

在Apache Flink中,输出文件(如你提到的"out"文件)的内容通常是在你的Flink作业中通过定义数据流的处理逻辑来确定的。Flink作业可以读取输入数据,进行一系列转换(transformations),并最终写入到输出目标中,比如文件、数据库或其他存储系统。

如果你发现终端(控制台)的输出没有写入到文件中,这可能是因为几个原因:

输出目标未正确配置:

确保你的Flink作业中配置了正确的输出路径和输出方式。例如,如果你使用的是DataStream API,你可能会使用writeAsText(), writeUsingOutputFormat(), 或者addSink()方法来指定输出。

对于文件输出,通常我们会使用BucketingSink或FileSink(在Flink 1.11及更高版本中引入)来管理文件的写入。

并行度问题:

Flink作业的并行度(parallelism)可能影响数据的输出。如果你的作业配置了多个并行任务,但输出配置没有正确处理并行写入,可能会导致数据写入到不同的文件或文件被覆盖。

异常处理:

确保你的Flink作业没有遇到异常或错误,这些可能会阻止数据的正常处理和输出。

查看日志:

查看Flink作业的日志,这可能会给出为什么数据没有写入文件的线索。你可以检查作业管理器的日志(如YARN、Kubernetes等)或Flink集群的日志文件。

Flink版本和配置:

确保你使用的Flink版本支持你的输出配置。不同的Flink版本可能在API或配置方面有所不同。

检查Flink的配置文件(如flink-conf.yaml),看是否有与输出相关的配置被错误地设置。

代码示例:

以下是一个简单的Flink作业示例,该作业读取文本文件,进行一些转换,并将结果写入到另一个文本文件中:



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/626070



问题四:flink main方法configuration传的参数为啥在process里的open拿不到?

咱们的flink main 方法configuration 传的参数为啥在process里的open 方法拿不到啊?



参考答案:

在 Apache Flink 中,当你通过 main 方法启动一个 Flink 作业,并使用 Configuration 对象来传递参数时,这些参数通常不会直接在 RichFunction(如 RichMapFunction, RichFlatMapFunction, RichProcessFunction 等)的 open 方法中通过 Configuration 对象访问到。Configuration 对象主要用于 Flink 框架内部的配置,而不是用于在用户定义的函数之间传递参数。

在 Flink 中,向用户定义的函数传递参数通常有以下几种方式:

使用 RuntimeContext:对于 RichFunction,你可以通过覆盖 open(Configuration parameters) 方法并在其中访问 getRuntimeContext().getExecutionConfig().getGlobalJobParameters() 来获取全局作业参数。但请注意,这里获取的不是 Configuration 对象,而是 GlobalJobParameters,它通常包含通过命令行传递的参数。

使用 BroadcastState 或 BroadcastProcessFunction:如果你需要在多个并行实例之间共享一些配置或状态,可以使用广播状态。但请注意,这通常用于更高级的场景。

使用函数参数:直接在函数的构造函数中传递参数,然后在 open 方法中使用它们。

使用 Flink 表的参数化查询:如果你在使用 Flink SQL 或 Table API,可以通过参数化查询来传递参数。

下面是一个简单的示例,演示如何在 Flink 的 RichProcessFunction 中使用全局作业参数:



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/627748



问题五:Flink k8s HA 锁资源在etcd偶发出现写失败 时候,请教一下这个机制有优化的配置吗?

Flink k8s HA 锁资源在etcd偶发出现写失败 时候,会导致任务批量HA重启。

请教一下这个机制有优化的配置吗? 比如锁可以重试几次后 再切换嘛?



参考答案:

K8S ha 是有个配置的

调一下这几个配置

high-availability.kubernetes.leader-election.retry-period: 10 s 这个也调大一点



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/623563

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
7天前
|
存储 Oracle 关系型数据库
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
本文介绍了MySQL InnoDB存储引擎中的数据文件和重做日志文件。数据文件包括`.ibd`和`ibdata`文件,用于存放InnoDB数据和索引。重做日志文件(redo log)确保数据的可靠性和事务的持久性,其大小和路径可由相关参数配置。文章还提供了视频讲解和示例代码。
113 11
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
|
12天前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
zdl
|
3天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
18 0
|
28天前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
33 2
|
7天前
|
SQL Oracle 关系型数据库
【赵渝强老师】Oracle的联机重做日志文件与数据写入过程
在Oracle数据库中,联机重做日志文件记录了数据库的变化,用于实例恢复。每个数据库有多组联机重做日志,每组建议至少有两个成员。通过SQL语句可查看日志文件信息。视频讲解和示意图进一步解释了这一过程。
|
1月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
1月前
|
数据采集 机器学习/深度学习 存储
使用 Python 清洗日志数据
使用 Python 清洗日志数据
34 2
|
1月前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
115 0
|
2月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
4月前
|
存储 监控 大数据
阿里云实时计算Flink在多行业的应用和实践
本文整理自 Flink Forward Asia 2023 中闭门会的分享。主要分享实时计算在各行业的应用实践,对回归实时计算的重点场景进行介绍以及企业如何使用实时计算技术,并且提供一些在技术架构上的参考建议。
818 7
阿里云实时计算Flink在多行业的应用和实践

相关产品

  • 实时计算 Flink版