RocketMQ 5.0 分级存储背后的技术优化与挑战

本文涉及的产品
云原生多模数据库 Lindorm,多引擎 多规格 0-4节点
云数据库 Tair(兼容Redis),内存型 2GB
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: RocketMQ 5.0 分级存储背后的技术优化与挑战

RocketMQ 是一款分布式消息系统,具有高性能、高可靠性和高可扩展性。在 RocketMQ 5.0 中,引入了分级存储功能,以满足大数据量存储和检索的需求。本文将探讨 RocketMQ 5.0 分级存储背后的技术优化和挑战。
分级存储架构
RocketMQ 5.0 分级存储将数据分为两部分:内存数据和磁盘数据。内存数据用于存储近期的、访问频率较高的数据,以实现高性能读写;磁盘数据用于存储长期的、访问频率较低的数据,以实现大容量存储。这种架构实现了高性能和大容量的平衡。
数据压缩
为了减少磁盘空间占用和网络传输带宽,RocketMQ 5.0 采用了数据压缩技术。通过对数据进行压缩,可以显著减少数据存储和传输的开销。然而,压缩技术也会带来额外的计算负担,需要在性能和存储空间之间进行权衡。
数据索引
为了提高数据检索效率,RocketMQ 5.0 引入了数据索引技术。通过建立索引,可以快速定位到所需数据,从而提高数据检索速度。然而,索引的建立和维护也会带来额外的计算和存储开销,需要在索引效率和开销之间进行权衡。
数据分片
为了实现数据的分布式存储和负载均衡,RocketMQ 5.0 采用了数据分片技术。通过对数据进行分片,可以将数据分散到多个节点上,从而实现数据的分布式存储。然而,数据分片也会带来数据的一致性问题,需要采取相应的同步和容错机制。
数据备份与恢复
为了保证数据的高可靠性和可用性,RocketMQ 5.0 实现了数据备份和恢复功能。通过对数据进行备份,可以在数据丢失或节点故障时进行恢复。然而,备份和恢复操作也会带来额外的计算和存储开销,需要在数据安全和性能之间进行权衡。
总结
RocketMQ 5.0 分级存储背后的技术优化和挑战主要包括:分级存储架构、数据压缩、数据索引、数据分片、数据备份与恢复。在实际应用中,需要根据具体场景和需求进行权衡和优化,以实现高性能、高可靠性和高可扩展性的目标。

相关实践学习
快速体验阿里云云消息队列RocketMQ版
本实验将带您快速体验使用云消息队列RocketMQ版Serverless系列实例进行获取接入点、创建Topic、创建订阅组、收发消息、查看消息轨迹和仪表盘。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
相关文章
|
4天前
|
数据采集 传感器 监控
Modbus 与 MQTT 协议兼容:MyEMS 的泛在能源数据采集技术实现
MyEMS深度融合Modbus与MQTT协议,破解能源数据采集中协议碎片化、网络异构、数据孤岛等难题。通过Modbus接入95%以上工业设备,实现现场数据精准“拉取”;依托MQTT构建高效物联网传输通道,支持多源数据主动“推送”与云端集成。边缘侧采集规整,中心侧汇聚分析,形成统一、可靠、低延迟的数据流。该架构兼具高兼容性、强扩展性与低运维成本,广泛应用于工业园区、商业楼宇及集团型企业,支撑实时监控、AI分析与跨系统融合,打造泛在互联的能源数据底座,助力企业实现全面智慧能源管理。
41 6
|
5月前
|
消息中间件 存储 NoSQL
RocketMQ实战—6.生产优化及运维方案
本文围绕RocketMQ集群的使用与优化,详细探讨了六个关键问题。首先,介绍了如何通过ACL配置实现RocketMQ集群的权限控制,防止不同团队间误用Topic。其次,讲解了消息轨迹功能的开启与追踪流程,帮助定位和排查问题。接着,分析了百万消息积压的处理方法,包括直接丢弃、扩容消费者或通过新Topic间接扩容等策略。此外,提出了针对RocketMQ集群崩溃的金融级高可用方案,确保消息不丢失。同时,讨论了为RocketMQ增加限流功能的重要性及实现方式,以提升系统稳定性。最后,分享了从Kafka迁移到RocketMQ的双写双读方案,确保数据一致性与平稳过渡。
|
5月前
|
SQL 大数据 数据库
RocketMQ实战—1.订单系统面临的技术挑战
本文详细分析了一个订单系统的设计与技术挑战。首先,介绍了订单系统的整体架构、业务流程及负载情况,包括电商购物流程、核心和非核心业务流程,以及真实生产中的负载压力。接着,探讨了系统面临的主要技术问题:支付后发券、发红包等操作导致性能下降;退款流程复杂且易失败;与第三方系统耦合带来的不稳定;大数据团队直接查询数据库影响性能;秒杀活动时数据库压力剧增等。最后,通过放大100倍压力的方法,梳理了高并发下的技术挑战,如核心链路优化、后台线程补偿机制、第三方系统解耦、数据获取方式改进等,为订单系统的优化提供了全面的参考。
RocketMQ实战—1.订单系统面临的技术挑战
|
消息中间件 存储 RocketMQ
消息中间件-RocketMQ技术(二)
消息中间件-RocketMQ技术(二)
|
消息中间件 存储 中间件
消息中间件-RocketMQ技术(一)
消息中间件-RocketMQ技术(一)
|
消息中间件 弹性计算 Kubernetes
RabbitMQ与容器化技术的集成实践
【8月更文第28天】RabbitMQ 是一个开源消息代理和队列服务器,用于在分布式系统中存储、转发消息。随着微服务架构的普及,容器化技术(如 Docker 和 Kubernetes)成为了部署和管理应用程序的标准方式。本文将探讨如何使用 Docker 和 Kubernetes 在生产环境中部署和管理 RabbitMQ 服务,同时保证高可用性和弹性伸缩能力。
272 3
|
消息中间件 Cloud Native Serverless
RabbitMQ 与云原生技术的融合
【8月更文第28天】随着微服务架构和容器化的普及,云原生技术已成为构建现代应用的标准方式。云原生应用程序利用了诸如容器化、微服务、声明式API等技术,以提高可伸缩性、可靠性和可维护性。消息队列作为服务间通信的关键组件,在云原生环境中扮演着重要角色。本文将探讨如何将RabbitMQ与云原生技术(如Service Mesh和Serverless平台)相结合,并通过具体的代码示例来展示其集成方法。
124 2
|
消息中间件 存储 数据库
深入学习RocketMQ的底层存储设计原理
文章深入探讨了RocketMQ的底层存储设计原理,分析了其如何通过将数据和索引映射到内存、异步刷新磁盘以及消息内容的混合存储来实现高性能的读写操作,从而保证了RocketMQ作为一款低延迟消息队列的读写性能。
|
消息中间件 存储 物联网
RocketMQ 之 IoT 消息解析:物联网需要的消息技术
RocketMQ 5.0 是为应对物联网(IoT)场景而发布的云原生消息中间件,旨在解决 IoT 中大规模设备连接、数据处理和边缘计算的需求。
1427 105
|
消息中间件 弹性计算 运维
云消息队列RabbitMQ 版架构优化评测
云消息队列RabbitMQ 版架构优化评测
142 6