App Inventor 2 Personal Image Classifier (PIC) 拓展:自行训练AI图像识别模型,开发图像识别分类App

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 这里仅仅介绍一下AI图像识别App的实现原理,AI的基础技术细节不在本文讨论范围。通过拓展即可开发出一款完全自行训练AI模型,用于特定识别场景的App了。

我们都知道,人工智能AI的基本原理是事先准备好样本数据(这里指的是图片)及数据的标注信息(如图片中的人物是高兴、愤怒、哭泣等图片的判定信息),通过AI算法的训练,对输入的样本及标注进行拟合,形成最终的训练集数据。有了这份训练集数据,当下次我们输入一张新的图像时,AI算法根据训练集数据就能判断出图片中的人物的具体表情,这样就能对图片进行初步的分类。当然,判断的准确率和样本数量是有关系的,也和数据标注的准确性有关,还和具体的AI算法有关。

PersonalImageClassifier (PIC) 拓展

拓展的事件、方法、属性如下:

图像分类App原理介绍

这里仅仅介绍一下AI图像分类App的实现原理,AI的基础技术细节不在本文讨论范围。

我们都知道,人工智能AI的基本原理是事先准备好样本数据(这里指的是图片)及数据的标注信息(如图片中的人物是高兴、愤怒、哭泣等图片的判定信息),通过AI算法的训练,对输入的样本及标注进行拟合,形成最终的训练集数据。有了这份训练集数据,当下次我们输入一张新的图像时,AI算法根据训练集数据就能判断出图片中的人物的具体表情,这样就能对图片进行初步的分类。当然,判断的准确率和样本数量是有关系的,也和数据标注的准确性有关,还和具体的AI算法有关。

开发步骤

在线训练AI模型,生成模型数据,下载给PIC拓展使用

在线AI模型训练网站(国内访问正常):https://classifier.appinventor.mit.edu/oldpic/

在线训练详细步骤(英文版):https://appinventor.mit.edu/explore/resources/ai/personal-image-classifier-part1

这里仅截取部分训练步骤:

最后可以在线对新输入的图片进行AI识别,如:微笑表情:

最后,可以下载训练好的模型数据。

App Inventor 2 使用拓展及AI模型数据,对图像进行识别和分类

PersonalImageClassifier (PIC) 拓展的用法请参考demo,或直接看英文文档自行研究,这里暂时不做展开,文档如下:

https://www.hackster.io/mjrobot/app-inventor-edgeml-image-classification-fruits-vs-veggies-b671da


原文地址:https://www.fun123.cn/reference/extensions/PersonalImageClassifier.html

目录
打赏
0
1
1
0
7
分享
相关文章
AI战略丨拓展智能边界,大模型体系全面升级
阿里云在基础模型体系和生态、模型工程化落地路径、端云协同解决方案等多维度上都在快速迭代。
|
23天前
|
如何在苹果内购开发中获取App Store Connect API密钥-共享密钥理解内购安全-优雅草卓伊凡
如何在苹果内购开发中获取App Store Connect API密钥-共享密钥理解内购安全-优雅草卓伊凡
99 15
如何在苹果内购开发中获取App Store Connect API密钥-共享密钥理解内购安全-优雅草卓伊凡
布谷一对一直播源码开发:阿里云视频语音通话社交交友App的必备功能
在当今移动社交领域,一对一视频和语音通话功能已成为用户期待的基础配置。从熟人社交到陌生人交友,从专业咨询到情感陪伴,实时音视频互动能力直接决定了社交App的用户留存和市场竞争力。山东布谷科技将深入探讨一对一直播源码开发高质量一对一视频和语音通话功能的关键要素和技术实现方案。
布谷一对一直播源码开发:阿里云视频语音通话社交交友App的必备功能
【一步步开发AI运动APP】四、使用相机组件抽帧
本文介绍了如何使用`ai-camera`组件开发AI运动APP,助力开发者深耕AI运动领域。`ai-camera`是专为AI运动场景设计的相机组件,支持多平台,提供更强的抽帧处理能力和API。文章详细讲解了获取相机上下文、执行抽帧操作以及将帧保存到相册的功能实现,并附有代码示例。无论是AI运动APP还是其他场景,该组件都能满足预览、拍照、抽帧等需求。下篇将聚焦人体识别检测,敬请期待!
【一步步开发AI运动APP】六、运动计时计数能调用
本文章介绍了如何通过【一步步开发AI运动APP】系列博文,利用uniAPP插件开发高性能的AI运动应用。文中详细说明了创建运动分析器、进行运动分析、监听计数变化以及停止/重置分析等功能实现步骤。插件内置多种常见运动(如跳绳、俯卧撑等),支持自定义扩展,满足健身、体测等场景需求。示例代码展示了人体检测、运动计时计数及UI更新的完整流程,帮助开发者快速上手并深耕AI运动领域。
工会成立100周年纪念,开发职工健身AI运动小程序、APP方案推荐
为庆祝中华全国总工会成立100周年,特推出基于AI技术的智能健身系统,以小程序和APP形式呈现,助力职工健康生活。方案包括:1) 小程序插件,支持多种运动识别,开箱即用;2) APP插件,提供更高精度的运动检测;3) 成熟的「AI乐运动」系统,支持赛事活动管理。这些方案满足不同需求,推动全民健身体验升级,彰显工会对职工健康的关怀。
鸿蒙NEXT开发App相关工具类(ArkTs)
这段代码展示了一个名为鸿蒙NEXT开发 `AppUtil` 的工具类,主要用于管理鸿蒙应用的上下文、窗口、状态栏、导航栏等配置。它提供了多种功能,例如设置灰阶模式、颜色模式、字体类型、屏幕亮度、窗口属性等,并支持获取应用包信息(如版本号、包名等)。该工具类需在 UIAbility 的 `onWindowStageCreate` 方法中初始化,以便缓存全局变量。代码由鸿蒙布道师编写,适用于鸿蒙系统应用开发,帮助开发者更便捷地管理和配置应用界面及系统属性。
【一步步开发AI运动APP】五、人体检测能力调用
本文介绍如何开发性能更强、体验更优的AI运动APP,涵盖人体检测、实例创建、检测识别、骨骼图绘制及完整代码实现。通过API `createHumanDetector`,可灵活配置高性能、高精度或多人检测模式,省去模型部署麻烦。检测结果可通过`yz-pose-grapher`组件高效渲染骨骼图。最后提醒使用完毕需调用`destroy()`释放资源,下篇将聚焦运动检测分析,敬请期待!
【一步步开发AI运动APP】二、跨平台APP AI运动识别方案介绍
本系列博文旨在帮助开发者从【AI运动小程序】迈向性能更优的【AI运动APP】开发。通过「云智AI运动识别」uni-app版插件,提供本地原生极速识别、精准姿态检测及运动计时计数功能,支持健身系统、线上赛事、学生体测、康复锻炼等多场景应用。插件无需云端依赖,一次付费永久使用,成本低且扩展性强。同时兼容uni-app与uni-app x框架,适合不同技术背景的开发者快速上手,助力抢占AI辅助运动市场。下篇将介绍插件引入,敬请期待!
【一步步开发AI运动APP】一、写在最前
本文介绍新系列【一步步开发AI运动APP】,旨在帮助开发者突破小程序限制,打造性能更强、体验更佳的AI运动APP。相比小程序,APP可充分利用CPU/GPU算力,实现高精度人体检测、多人检测等复杂功能。本系列基于跨平台框架`uni`及扩展插件`uni AI运动识别插件`,适合有小程序开发经验的开发者。内容涵盖抽帧、人体识别、运动分析、姿态交互等,逐步进阶实现完整AI运动APP,并支持多手机平台发布。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等