栈:
栈的概念及结构:
栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端 称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。一般用在1.公平性排队(抽号机);2.BFS(广度优先遍历)。
压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。
出栈:栈的删除操作叫做出栈。出数据也在栈顶。
栈的实现:
栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的代价比较小。链的尾插需要调动更多的数据,过程中有更多的消耗。
// 支持动态增长的栈
typedef int STDataType ;
typedef struct Stack
{
STDataType * _a ;
int _top ; // 栈顶
int _capacity ; // 容量
} Stack ;
// 初始化栈
void StackInit ( Stack * ps );
// 入栈
void StackPush ( Stack * ps , STDataType data );
// 出栈
void StackPop ( Stack * ps );
// 获取栈顶元素
STDataType StackTop ( Stack * ps );
// 获取栈中有效元素个数
int StackSize ( Stack * ps );
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回 0
int StackEmpty ( Stack * ps );
// 销毁栈
void StackDestroy ( Stack * ps );
//初始化栈
//初始化 void SLInit(SL* ps) { assert(ps); ps->a = NULL; ps->capacity = ps->top = 0; }
//入栈
//入栈 void SLPush(SL* ps, STDataType x) { assert(ps); //栈顶=容量说明需要扩容 if (ps->capacity == ps->top) { int newcapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity; STDataType* tmp = (STDataType*)realloc(ps->a,sizeof(STDataType) * newcapacity); if (tmp == NULL) { perror("realloc fail"); exit(-1); } ps->capacity = newcapacity; ps->a = tmp; } ps->a[ps->top] = x; //后缀++方便下一次入栈和打印栈顶 ps->top++; }
//出栈
//出栈 void SLPop(SL* ps) { assert(ps); //为空情况“0” assert(ps->top > 0); // --ps->top; }
//获得栈顶元素
//获得栈顶元素 STDataType SLTTop(SL* ps) { assert(ps); //为空情况“0” assert(ps->top > 0); int n = (ps->top) - 1; return ps->a[n]; }
//获取栈中有效元素个数
//获取栈中有效元素个数 int SLSize(SL* ps) { assert(ps); return ps->top; }
//销毁栈
//销毁栈 void SLDestroy(SL* ps) { assert(ps); //开辟数组优势:一次全部释放 free(ps->a); ps->a = NULL; ps->capacity = ps->top = 0; }
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 bool SLEmpty(SL* ps) { assert(ps); //为“0”说明为NULL if (ps->top == 0) { return true; } return false; }
队列:
队列的概念及结构:
队列: 只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有 先进先出 FIFO(First In First Out) 。
入队列:进行插入操作的一端称为队尾;
出队列:进行删除操作的一端称为队头。
队列的实现:
队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数 组头上出数据,效率会比较低。
// 链式结构:表示队列
typedef struct QListNode
{
struct QListNode * _pNext ;
QDataType _data ;
} QNode ;
// 队列的结构
typedef struct Queue
{
QNode * _front ;
QNode * _rear ;
} Queue ;
// 初始化队列
void QueueInit ( Queue * q );
// 队尾入队列
void QueuePush ( Queue * q , QDataType data );
// 队头出队列
void QueuePop ( Queue * q );
// 获取队列头部元素
QDataType QueueFront ( Queue * q );
// 获取队列队尾元素
QDataType QueueBack ( Queue * q );
// 获取队列中有效元素个数
int QueueSize ( Queue * q );
// 检测队列是否为空,如果为空返回非零结果,如果非空返回 0
int QueueEmpty ( Queue * q );
// 销毁队列
void QueueDestroy ( Queue * q );
//初始化
//初始化 void QueueInit(Que* pq) { assert(pq); pq->head = pq->tail = NULL; pq->size = 0; }
//入列
//入列 void QueuePush(Que* pq, Qdatatype x) { assert(pq); //开辟队列结构动态内存 Qnode* newnode = (Qnode*)malloc(sizeof(Qnode)); if (newnode == NULL) { perror("malloc fail"); exit(-1); } newnode->data = x; newnode->next = NULL; //第一次或N+1次 if (pq->tail == NULL) { pq->head = pq->tail = newnode; } else { pq->tail->next = newnode; pq->tail = newnode; } pq->size++; }
//出列
//出列 void QueuePop(Que* pq) { assert(pq); assert(!QueueEmpty(pq)); if (pq->head->next == NULL) { //就剩下一个 free(pq->head); pq->head = pq->tail = NULL; } else { //剩下两个及以上 Que * del = pq->head; pq->head = pq->head->next; free(del); } pq->size--; }
// 获取队列头部元素
// 获取队列头部元素 Qdatatype QueueFront(Que* pq) { assert(pq); assert(!QueueEmpty(pq)); return pq->head->data; }
// 获取队列队尾元素
// 获取队列队尾元素 Qdatatype QueueBack(Que* pq) { assert(pq); assert(!QueueEmpty(pq)); return pq->tail->data; }
// 获取队列中有效元素个数
// 获取队列中有效元素个数 int QueueSize(Que* pq) { assert(pq); return pq->size; }
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 int QueueEmpty(Que* pq) { assert(pq); return pq->head == NULL; }
//销毁
//销毁 void QueueDestroy(Que* pq) { assert(pq); while (pq->head) { Que* del = pq->head->next; free(pq->head); pq->head = del; pq->size--; } pq->head = pq->tail = NULL; }
扩展知识:
队列适合使用链表实现,使用顺序结构(即固定的连续空间)实现时会出现假溢出的问题,因此大佬们设计出了循环队列,循环队列就是为了解决顺序结构实现队列假溢出问题的
循环队列:实际中我们有时还会使用一种队列叫循环队列。如操作系统课程讲解生产者消费者模型时可以就会使用循环队列。环形队列可以使用数组实现,也可以使用循环链表实现。
同时指向一个位置为空,rear(尾)的下一个位置为front(头)时说明已经填满,此处是多开辟了一个空间来做判断是否为满 !!!
以上就是个人学习线性表的个人见解和学习的解析,欢迎各位大佬在评论区探讨!
感谢大佬们的一键三连! 感谢大佬们的一键三连! 感谢大佬们的一键三连!