patchworklib,一款极其强大的 Python 库!

简介: patchworklib,一款极其强大的 Python 库!

一、问题

如果想把多个图合并放在一个图里,如图,该如何实现 好在R语言 和 Python 都有对应的解决方案, 分别是patchwork包和patchworklib库。

二、R语言

安装


# install.packages("devtools")
devtools::install_github("thomasp85/patchwork")

两个图并排在一行,只需要导入patchwork, 然后相加即可


library(ggplot2)
library(patchwork)

p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))

p1 + p2

两行,第一行三个图,第二行一个图

p3 <- ggplot(mtcars) + geom_smooth(aes(disp, qsec))
p4 <- ggplot(mtcars) + geom_bar(aes(carb))

(p1 | p2 | p3) /
      p4

三、Python

Patchworklib 是与 matplotlib 相关的绘图(简单 matplotlib 绘图、Seaborn 绘图(轴级和图形级)和plotnine 绘图)的通用编辑器。这个库的灵感来自于 ggplot2 的patchwork。因此,作为原始拼凑,用户可以轻松地仅使用/和|对齐 matplotlib 图。

Patchworklib 提供了该问题的解决方案。通过使用 patchworklib,任何类型的seaborn 和plotnine 图都可以作为matplotlib 子图进行处理。安装


pip3 install patchworklib
import patchworklib as pw
import seaborn as sns 

fmri = sns.load_dataset("fmri")
ax1 = pw.Brick(figsize=(3,2))
sns.lineplot(x="timepoint", y="signal", hue="region", style="event", data=fmri, ax=ax1)
ax1.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left')
ax1.set_title("ax1")
 
titanic = sns.load_dataset("titanic")
ax2 = pw.Brick(figsize=(1,2))
sns.barplot(x="sex", y="survived", hue="class", data=titanic, ax=ax2)
ax2.move_legend(new_loc='upper left', bbox_to_anchor=(1.05, 1.0))
ax2.set_title("ax2")

ax12 = ax1|ax2
ax12.savefig("ax12.png")


#省略 ax1、ax2、ax4绘制过程

ax124 = ax1|ax2|ax4
ax124.savefig("../img/ax124.png")

#省略 ax124、ax3、ax5绘制过程
ax12435 = ax124/(ax3|ax5)
ax12435.savefig("../img/ax12435.png")

好了,这就是今天分享的全部内容,喜欢就点个赞吧~

相关文章
|
3天前
|
算法 Python
请解释Python中的关联规则挖掘以及如何使用Sklearn库实现它。
使用Python的mlxtend库,可以通过Apriori算法进行关联规则挖掘。首先导入TransactionEncoder和apriori等模块,然后准备数据集(如购买行为列表)。对数据集编码并转换后,应用Apriori算法找到频繁项集(设置最小支持度)。最后,生成关联规则并计算置信度(设定最小置信度阈值)。通过调整这些参数可以优化结果。
25 9
|
17天前
|
存储 缓存 JavaScript
python实战篇:利用request库打造自己的翻译接口
python实战篇:利用request库打造自己的翻译接口
29 1
python实战篇:利用request库打造自己的翻译接口
|
3天前
|
索引 Python
如何在Python中使用Pandas库进行季节性调整?
在Python中使用Pandas和Statsmodels进行季节性调整的步骤包括:导入pandas和seasonal_decompose模块,准备时间序列DataFrame,调用`seasonal_decompose()`函数分解数据为趋势、季节性和残差,可选地绘制图表分析,以及根据需求去除季节性影响(如将原始数据减去季节性成分)。这是对时间序列数据进行季节性分析的基础流程。
19 2
|
1天前
|
数据挖掘 数据处理 索引
如何使用Python的Pandas库进行数据筛选和过滤?
Pandas是Python数据分析的核心库,提供DataFrame数据结构。基本步骤包括导入库、创建DataFrame及进行数据筛选。示例代码展示了如何通过布尔索引、`query()`和`loc[]`方法筛选`Age`大于19的记录。
8 0
|
2天前
|
数据处理 Python
如何使用Python的Pandas库进行数据排序和排名
【4月更文挑战第22天】Pandas Python库提供数据排序和排名功能。使用`sort_values()`按列进行升序或降序排序,如`df.sort_values(by=&#39;A&#39;, ascending=False)`。`rank()`函数用于计算排名,如`df[&#39;A&#39;].rank(ascending=False)`。多列操作可传入列名列表,如`df.sort_values(by=[&#39;A&#39;, &#39;B&#39;], ascending=[True, False])`和分别对&#39;A&#39;、&#39;B&#39;列排名。
13 2
|
3天前
|
Python
如何使用Python的Pandas库进行数据缺失值处理?
Pandas在Python中提供多种处理缺失值的方法:1) 使用`isnull()`检查;2) `dropna()`删除含缺失值的行或列;3) `fillna()`用常数、前后值填充;4) `interpolate()`进行插值填充。根据需求选择合适的方法处理数据缺失。
29 9
|
4天前
|
缓存 自然语言处理 数据处理
Python自然语言处理面试:NLTK、SpaCy与Hugging Face库详解
【4月更文挑战第16天】本文介绍了Python NLP面试中NLTK、SpaCy和Hugging Face库的常见问题和易错点。通过示例代码展示了如何进行分词、词性标注、命名实体识别、相似度计算、依存关系分析、文本分类及预训练模型调用等任务。重点强调了理解库功能、预处理、模型选择、性能优化和模型解释性的重要性,帮助面试者提升NLP技术展示。
22 5
|
5天前
|
Python
如何使用Python的Plotly库创建交互式图表?
Plotly是Python的交互式图表库,支持多种图表类型,如折线图、散点图、柱状图。使用步骤包括安装库、导入模块、准备数据、创建图表对象、添加数据和设置属性,最后显示或保存图表。
16 6
|
5天前
|
机器学习/深度学习 数据采集 算法
请解释Python中的Sklearn库以及它的主要用途。
Sklearn是Python的机器学习库,提供数据预处理、特征选择、分类回归、聚类、模型评估和参数调优等工具。包含监督和无监督学习算法,如SVM、决策树、K-means等,并提供样例数据集便于实践。它是进行机器学习项目的重要资源。
13 1
|
5天前
|
XML 数据采集 自然语言处理
请解释Python中的BeautifulSoup库以及它的主要用途。
BeautifulSoup是Python的HTML/XML解析库,用于数据提取和网页抓取。它提供树形结构解析文档,支持查找、访问和修改元素。主要用途包括网页抓取、数据清洗、自动化测试、内容生成、网站开发及与其他库集成,如Requests和Scrapy。适用于各种数据处理场景。
9 1