前言
孪生神经网络是一种先进的深度学习模型,它通过将原始网络和孪生网络结合起来,可以解决图像识别任务中的一些难题。在这篇文章中,我们将介绍孪生神经网络的组成部分、工作原理以及应用案例。希望通过这篇文章,读者可以更深入地了解孪生神经网络的各个方面,从而更好地掌握这种先进的深度学习模型。
组成部分
孪生神经网络通过将原始网络和孪生网络结合起来。具体来说,孪生神经网络通过孪生技术,将原始网络提取出的特征进行稳定化,使得不同光照、角度、尺寸的图像中提取出的特征更加稳定,从而提高了图像识别的准确性。同时,孪生神经网络也提高了模型的可解释性,通过孪生技术,可以将原始网络和孪生网络的参数分开计算,使得用户的对模型的解释更加容易和理解。
原始网络:
原始网络主要负责从输入的图像中提取特征。原始网络通常包含多个卷积层和池化层,可以提取出图像中的局部特征。 例如,我们可以使用经典的resnet系列的网络:
python
复制代码
import torch from torch import Tensor import torch.nn as nn from typing import Type, Any, Callable, Union, List, Optional def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion: int = 1 def __init__( self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, groups: int = 1, base_width: int = 64, dilation: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion: int = 4 def __init__( self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, groups: int = 1, base_width: int = 64, dilation: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__( self, block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], num_classes: int = 1000, zero_init_residual: bool = False, groups: int = 1, width_per_group: int = 64, replace_stride_with_dilation: Optional[List[bool]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, stride: int = 1, dilate: bool = False) -> nn.Sequential: norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def _forward_impl(self, x: Tensor) -> Tensor: # See note [TorchScript super()] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) # x = self.fc(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x) def _resnet( arch: str, block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], pretrained: bool, progress: bool, **kwargs: Any ) -> ResNet: model = ResNet(block, layers, **kwargs) return model def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: r"""ResNet-18 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs) def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: r"""ResNet-34 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: r"""ResNet-50 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)
孪生网络&输出层:
孪生网络主要负责对原始网络提取出的特征进行孪生。孪生网络通常也包含多个卷积层和池化层,但其参数与原始网络不同,以防止对原始网络的特征进行混淆。孪生网络还包括一个全连接层,用于将原始网络的特征与输出结果相连接。
输出层是孪生神经网络的最后一层,用于输出模型的预测结果。输出层的参数通常与原始网络和孪生网络不同,以防止对输出结果进行混淆。
ini
复制代码
import torch import torch.nn as nn from resnet import resnet50 resnet50 = resnet50(pretrained=False) resnet = resnet50.features class SiameseNetwork(nn.Module): def __init__(self, input_shape): super(SiameseNetwork, self).__init__() self.resnet = resnet self.fc = nn.Sequential( nn.Linear(2048, 1023), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(1023, 1)) def forward_once(self, x): output = self.resnet(x) output = torch.flatten(output, 1) return output def forward(self, input1, input2): output1 = self.forward_once(input1) output2 = self.forward_once(input2) output = output1 - output2 output = self.fc(output) return output
在孪生神经网络中,原始网络和孪生网络的参数是分开计算的。具体来说,孪生网络的参数是在训练过程中,通过对原始网络进行反向传播,从原始网络的输出结果中计算得出的。这样可以确保孪生网络对原始网络的特征进行稳定化处理,从而提高了模型的准确性和稳定性。
工作原理
孪生神经网络是一种深度学习模型,它通过将原始网络和孪生网络结合起来,可以解决图像识别任务中的一些难题。孪生神经网络的工作原理可以概括为以下几个步骤:
- 输入数据:孪生神经网络的输入是一张图片,通常是一个三维的张量,其中每个元素代表图片中的一个像素。
- 原始网络提取特征:原始网络是孪生神经网络中的第一个网络,它主要负责从输入的图片中提取特征。原始网络通常包含多个卷积层和池化层,可以提取出图片中的局部特征。
- 孪生网络稳定特征:孪生网络是孪生神经网络中的第二个网络,它主要负责对原始网络提取出的特征进行稳定化处理。孪生网络通常也包含多个卷积层和池化层,但其参数与原始网络不同,以防止对原始网络的特征进行混淆。孪生网络还包括一个全连接层,用于将原始网络的特征与输出结果相连接。
- 孪生网络输出结果:孪生网络通过全连接层将原始网络的特征稳定化处理后,输出一个二维的张量,这个张量代表输入图片的特征向量。
- 输出网络输出结果:孪生神经网络的最后一层通常是输出层,它主要负责将孪生网络输出的特征向量转换为输出结果。输出层的参数与原始网络和孪生网络不同,以防止对输出结果进行混淆。
- 模型训练:孪生神经网络的训练过程是通过反向传播算法完成的。在训练过程中,孪生神经网络的输出结果与真实标签进行比较,通过误差函数来指导模型的调整,使得模型输出的结果更加准确。
通过上述工作原理,孪生神经网络可以将输入图片中的特征提取并稳定化,从而提高了图像识别模型的准确性和稳定性。