深度学习神经网络的使用keras搭建

简介: 深度学习神经网络的使用keras搭建

1 神经网络的搭建

接下来我们来构建如下图所示的神经网络模型

tf.Keras中构建模有两种方式,一种是通过Sequential构建,一种是通过Model类构建。前者是按一定的顺序对层进行堆叠,而后者可以用来构建较复杂的网络模型。首先我们介绍下用来构建网络的全连接层:

tf.keras.layers.Dense(
    units, activation=None, use_bias=True, kernel_initializer='glorot_uniform',
    bias_initializer='zeros')

主要参数:

  • units: 当前层中包含的神经元个数
  • Activation: 激活函数,relu,sigmoid等
  • use_bias: 是否使用偏置,默认使用偏置
  • Kernel_initializer: 权重的初始化方式,默认是Xavier初始化
  • bias_initializer: 偏置的初始化方式,默认为0

1.1 通过Sequential构建

Sequential() 提供一个层的列表,就能快速地建立一个神经网络模型,实现方法如下所示:

# 导入相关的工具包
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# 定义一个Sequential模型,包含3层
model = keras.Sequential(
    [
        # 第一层:激活函数为relu,权重初始化为he_normal
        layers.Dense(3, activation="relu",
                     kernel_initializer="he_normal", name="layer1",input_shape=(3,)),
        # 第二层:激活函数为relu,权重初始化为he_normal
        layers.Dense(2, activation="relu",
                     kernel_initializer="he_normal", name="layer2"),
        # 第三层(输出层):激活函数为sigmoid,权重初始化为he_normal
        layers.Dense(2, activation="sigmoid",
                     kernel_initializer="he_normal", name="layer3"),
    ],
    name="my_Sequential"
)

接下来我们使用:

# 展示模型结果
model.summary()

如下所示:

Model: "my_Sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
layer1 (Dense)               (None, 3)                 12        
_________________________________________________________________
layer2 (Dense)               (None, 2)                 8         
_________________________________________________________________
layer3 (Dense)               (None, 2)                 6         
=================================================================
Total params: 26
Trainable params: 26
Non-trainable params: 0
_________________________________________________________________

通过这种sequential的方式只能构建简单的序列模型,较复杂的模型没有办法实现。

参数量计算:以第一个隐层为例:该隐层有3个神经元,每个神经元的参数为:4个(w1,w2,w3,b1),所以一共用3x4=12个参数。


1.2 利用function API构建

tf.keras 提供了 Functional API,建立更为复杂的模型,使用方法是将层作为可调用的对象并返回张量,并将输入向量和输出向量提供给 tf.keras.Modelinputsoutputs 参数,实现方法如下

# 导入工具包
import tensorflow as tf
# 定义模型的输入
inputs = tf.keras.Input(shape=(3,),name = "input")
# 第一层:激活函数为relu,其他默认
x = tf.keras.layers.Dense(3, activation="relu",name = "layer1")(inputs)
# 第二层:激活函数为relu,其他默认
x = tf.keras.layers.Dense(2, activation="relu",name = "layer2")(x)
# 第三层(输出层):激活函数为sigmoid
outputs = tf.keras.layers.Dense(2, activation="sigmoid",name = "layer3")(x)
# 使用Model来创建模型,指明输入和输出
model = tf.keras.Model(inputs=inputs, outputs=outputs,name="my_model") 

同样通过:

# 展示模型结果
model.summary()

结果如下所示:

Model: "my_model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input (InputLayer)           [(None, 3)]               0         
_________________________________________________________________
layer1 (Dense)               (None, 3)                 12        
_________________________________________________________________
layer2 (Dense)               (None, 2)                 8         
_________________________________________________________________
layer3 (Dense)               (None, 2)                 6         
=================================================================
Total params: 26
Trainable params: 26
Non-trainable params: 0
_________________________________________________________________

另外也可以通过:

# 模型展示
keras.utils.plot_model(model,show_shapes=True)

1.3 通过model的子类构建

通过model的子类构建模型,此时需要在__init__中定义神经网络的层,在call方法中定义网络的前向传播过程,实现方法如下:

# 导入工具包
import tensorflow as tf
# 定义model的子类
class MyModel(tf.keras.Model):
    # 在init方法中定义网络的层结构
    def __init__(self):
        super(MyModel, self).__init__()
        # 第一层:激活函数为relu,权重初始化为he_normal
        self.layer1 = tf.keras.layers.Dense(3, activation="relu",
                     kernel_initializer="he_normal", name="layer1",input_shape=(3,))
        # 第二层:激活函数为relu,权重初始化为he_normal
        self.layer2 =tf.keras.layers.Dense(2, activation="relu",
                     kernel_initializer="he_normal", name="layer2")
        # 第三层(输出层):激活函数为sigmoid,权重初始化为he_normal
        self.layer3 =tf.keras.layers.Dense(2, activation="sigmoid",
                     kernel_initializer="he_normal", name="layer3")
    # 在call方法中万完成前向传播
    def call(self, inputs):
        x = self.layer1(inputs)
        x = self.layer2(x)
        return self.layer3(x)
# 实例化模型
model = MyModel()
# 设置一个输入,调用模型(否则无法使用summay())
x = tf.ones((1, 3))
y = model(x)

同样的我们也可以通过summay方法来查看模型构建的结果

2 神经网络的优缺点

2.1 优点

  • 精度高,性能优于其他的机器学习方法,甚至在某些领域超过了人类
  • 可以近似任意的非线性函数
  • 随之计算机硬件的发展,近年来在学界和业界受到了热捧,有大量的框架和库可供调用

2.2 缺点

  • 黑箱,很难解释模型是怎么工作的
  • 训练时间长,需要大量的计算力
  • 网络结构复杂,需要调整超参数
  • 小数据集上表现不佳,容易发生过拟合

3 总结

  • 知道深度学习与机器学习的关系

深度学习是机器学习的一个子集,主要区别在是否包含特征工程

  • 知道神经网络是什么

一种模仿生物神经网络结构和功能的 计算模型

  • 知道常见的激活函数

默认使用relu,二分类是sigmoid, 多分类是softmaxs

  • 知道参数初始化的常见方法

随机初始化,标准初始化,Xavier初始化,He初始化

  • 能够利用tf.keras构建神经网络模型

Sequential的方法,Model的函数式编程,构建model的子类实现

  • 了解神经网络的优缺点
目录
相关文章
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
6天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
7天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
21 0
|
9天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习的奇迹:如何用神经网络识别图像
【10月更文挑战第33天】在这篇文章中,我们将探索深度学习的奇妙世界,特别是卷积神经网络(CNN)在图像识别中的应用。我们将通过一个简单的代码示例,展示如何使用Python和Keras库构建一个能够识别手写数字的神经网络。这不仅是对深度学习概念的直观介绍,也是对技术实践的一次尝试。让我们一起踏上这段探索之旅,看看数据、模型和代码是如何交织在一起,创造出令人惊叹的结果。
19 0
|
10天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
16天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
18天前
|
机器学习/深度学习 算法 计算机视觉
深度学习与生活:如何利用卷积神经网络识别日常物品
【10月更文挑战第24天】在这篇文章中,我们将探索深度学习如何从理论走向实践,特别是卷积神经网络(CNN)在图像识别中的应用。通过一个简单的示例,我们将了解如何使用CNN来识别日常生活中的物体,如水果和家具。这不仅是对深度学习概念的一次直观体验,也是对技术如何融入日常生活的一次深刻反思。文章将引导读者思考技术背后的哲理,以及它如何影响我们的生活和思维方式。
|
7天前
|
机器学习/深度学习 人工智能 测试技术
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术,尤其是卷积神经网络(CNN)在图像识别任务中的最新进展和面临的主要挑战。通过分析不同的网络架构、训练技巧以及优化策略,文章旨在提供一个全面的概览,帮助研究人员和实践者更好地理解和应用这些技术。
36 9
|
3天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的工作原理及其在处理图像数据方面的优势。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率。同时,文章也讨论了当前面临的主要挑战,包括数据不足、过拟合问题以及计算资源的需求,并提出了相应的解决策略。

热门文章

最新文章