m基于深度学习的QPSK调制解调系统相位检测和补偿算法matlab仿真

简介: m基于深度学习的QPSK调制解调系统相位检测和补偿算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:
1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法涉及理论知识概要
在数字通信中,正交相移键控(QPSK)是一种高效的调制方法,它能够在有限的带宽内传输更多的信息。然而,在实际通信过程中,由于信道噪声、多径效应等因素,接收到的QPSK信号可能会出现相位偏移,导致解调性能下降。为了解决这个问题,本文提出了一种基于深度学习的QPSK调制解调系统相位检测和补偿算法。该算法利用深度学习网络对接收到的信号进行相位检测,并根据检测结果对信号进行相位补偿,从而提高解调性能。

2.1 QPSK调制原理
QPSK调制是一种四相位的相位键控调制方式,它将每两个比特的信息映射到一个符号上,每个符号有四种可能的相位状态,分别是0°、90°、180°和270°。在调制过程中,首先将输入的二进制比特流进行串并转换,得到两路并行的比特流。然后,对每路比特流进行差分编码,生成两路正交的I路和Q路信号。最后,将I路和Q路信号通过正交调制器调制到载波上,得到QPSK调制信号。

2.2 深度学习相位检测算法
相位检测是QPSK解调的关键步骤之一。传统的相位检测方法通常基于锁相环(PLL)或最大似然估计(MLE)等算法,但这些方法在处理复杂信道条件下的信号时性能有限。因此,本文提出了一种基于深度学习的相位检测算法。

  该算法首先利用深度学习网络构建一个相位检测器模型。模型的输入是接收到的QPSK信号,输出是检测到的相位偏移量。在模型训练过程中,通过大量带有标签的训练数据对网络进行训练,使其能够学习到从输入信号到相位偏移量的映射关系。训练完成后,可以利用该模型对接收到的信号进行相位检测。

  深度学习网络的结构可以根据具体需求进行设计。常用的网络结构包括卷积神经网络(CNN)、循环神经网络(RNN)和自编码器等。在本文中,我们采用CNN作为相位检测器的网络结构。CNN通过多层卷积和池化操作提取信号的特征,并通过全连接层将特征映射到相位偏移量上。通过反向传播算法对网络进行训练和优化,可以得到适用于相位检测的深度学习模型。

2.3 相位补偿算法
在检测到相位偏移量后,需要对接收到的信号进行相位补偿以恢复原始信号。相位补偿可以通过对接收到的信号乘以一个相反的相位旋转因子来实现。具体的补偿方法取决于检测到的相位偏移量和信号调制方式。

3.MATLAB核心程序
```K = 2; %调制阶数
SNR = [0:1:20]; %信噪比范围0~25
phase = [pi/6]; %相位范围0~pi/4
LEN = 1000;

for i = 1:length(SNR)
i
for j = 1:20
[i,j]
%产生信号
signal = round(rand(1,LEN));
signal_modulated1 = Modulator(signal,K);
signal_receive1 = awgn(signal_modulated1,SNR(i),'measured');
signal_receive2 = signal_receive1exp(sqrt(-1)phase);

    offset2   = func_phase_est_dnn(signal_receive2);%基于深度学习的相位估计

    RR        = signal_receive2*exp(-sqrt(-1)*mean2(offset2));
    %加相位补偿
    output    = DeModulator(RR,K);

    msgr      = ones(size(output));
    idx       = find(output<=0);
    msgr(idx) = 0;

    len         = length(find(signal==msgr));
    errrate(i,j)= 1-len/length(signal);
    %没有相位补偿
    output2     = DeModulator(signal_receive2,K);

    msgr2       = ones(size(output2));
    idx2        = find(output2<=0);
    msgr2(idx2) = 0;

    len2      = length(find(signal==msgr2));
    errrate2(i,j)= 1-len2/length(signal);

end

end

figure;
semilogy(SNR,mean(errrate2,2),'b-o');
hold on
semilogy(SNR,mean(errrate,2),'r-s');
grid on
xlabel('SNR');
ylabel('误码率');
legend('QPSK无相位补偿误码率','QPSK相位补偿误码率');
```

相关文章
|
3天前
|
传感器 算法 数据安全/隐私保护
基于GA遗传优化的三维空间WSN网络最优节点部署算法matlab仿真
本程序基于遗传算法(GA)优化三维空间无线传感网络(WSN)的节点部署,通过MATLAB2022A实现仿真。算法旨在以最少的节点实现最大覆盖度,综合考虑空间覆盖、连通性、能耗管理及成本控制等关键问题。核心思想包括染色体编码节点位置、适应度函数评估性能,并采用网格填充法近似计算覆盖率。该方法可显著提升WSN在三维空间中的部署效率与经济性,为实际应用提供有力支持。
|
3天前
|
算法 数据处理 数据安全/隐私保护
基于投影滤波算法的rick合成地震波滤波matlab仿真
本课题基于MATLAB2022a实现对RICK合成地震波的滤波仿真,采用投影滤波与卷积滤波投影两种方法处理合成地震剖面。地震波滤波是地震勘探中的关键步骤,用于去噪和增强信号。RICK模型模拟实际地震数据,投影滤波算法通过分解信号与噪声子空间实现有效去噪。完整程序运行无水印,包含核心代码与理论推导,适用于地震数据处理研究及学习。
|
3天前
|
算法 物联网 数据安全/隐私保护
基于扩频解扩+汉明编译码+交织的lora通信系统matlab性能仿真
本内容展示了一种基于扩频解扩、汉明编译码和交织技术的LoRa通信算法。预览为无水印的完整程序运行效果,使用Matlab2022a开发。LoRa(Long Range)是一种低功耗广域网通信技术,适用于远距离低功耗数据传输。核心程序含详细中文注释与操作视频,涵盖抗干扰、错误检测纠正及突发错误对抗等关键技术,提升系统可靠性与稳定性。
|
17天前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
17天前
|
算法 机器人 数据安全/隐私保护
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
|
1月前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
|
17天前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
9天前
|
机器学习/深度学习 算法 Python
matlab思维进化算法优化BP神经网络
matlab思维进化算法优化BP神经网络
|
1月前
|
算法 安全 数据安全/隐私保护
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
101 35
|
2月前
|
算法 数据可视化 BI
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真

热门文章

最新文章