m基于深度学习的QPSK调制解调系统相位检测和补偿算法matlab仿真

简介: m基于深度学习的QPSK调制解调系统相位检测和补偿算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:
1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法涉及理论知识概要
在数字通信中,正交相移键控(QPSK)是一种高效的调制方法,它能够在有限的带宽内传输更多的信息。然而,在实际通信过程中,由于信道噪声、多径效应等因素,接收到的QPSK信号可能会出现相位偏移,导致解调性能下降。为了解决这个问题,本文提出了一种基于深度学习的QPSK调制解调系统相位检测和补偿算法。该算法利用深度学习网络对接收到的信号进行相位检测,并根据检测结果对信号进行相位补偿,从而提高解调性能。

2.1 QPSK调制原理
QPSK调制是一种四相位的相位键控调制方式,它将每两个比特的信息映射到一个符号上,每个符号有四种可能的相位状态,分别是0°、90°、180°和270°。在调制过程中,首先将输入的二进制比特流进行串并转换,得到两路并行的比特流。然后,对每路比特流进行差分编码,生成两路正交的I路和Q路信号。最后,将I路和Q路信号通过正交调制器调制到载波上,得到QPSK调制信号。

2.2 深度学习相位检测算法
相位检测是QPSK解调的关键步骤之一。传统的相位检测方法通常基于锁相环(PLL)或最大似然估计(MLE)等算法,但这些方法在处理复杂信道条件下的信号时性能有限。因此,本文提出了一种基于深度学习的相位检测算法。

  该算法首先利用深度学习网络构建一个相位检测器模型。模型的输入是接收到的QPSK信号,输出是检测到的相位偏移量。在模型训练过程中,通过大量带有标签的训练数据对网络进行训练,使其能够学习到从输入信号到相位偏移量的映射关系。训练完成后,可以利用该模型对接收到的信号进行相位检测。

  深度学习网络的结构可以根据具体需求进行设计。常用的网络结构包括卷积神经网络(CNN)、循环神经网络(RNN)和自编码器等。在本文中,我们采用CNN作为相位检测器的网络结构。CNN通过多层卷积和池化操作提取信号的特征,并通过全连接层将特征映射到相位偏移量上。通过反向传播算法对网络进行训练和优化,可以得到适用于相位检测的深度学习模型。

2.3 相位补偿算法
在检测到相位偏移量后,需要对接收到的信号进行相位补偿以恢复原始信号。相位补偿可以通过对接收到的信号乘以一个相反的相位旋转因子来实现。具体的补偿方法取决于检测到的相位偏移量和信号调制方式。

3.MATLAB核心程序
```K = 2; %调制阶数
SNR = [0:1:20]; %信噪比范围0~25
phase = [pi/6]; %相位范围0~pi/4
LEN = 1000;

for i = 1:length(SNR)
i
for j = 1:20
[i,j]
%产生信号
signal = round(rand(1,LEN));
signal_modulated1 = Modulator(signal,K);
signal_receive1 = awgn(signal_modulated1,SNR(i),'measured');
signal_receive2 = signal_receive1exp(sqrt(-1)phase);

    offset2   = func_phase_est_dnn(signal_receive2);%基于深度学习的相位估计

    RR        = signal_receive2*exp(-sqrt(-1)*mean2(offset2));
    %加相位补偿
    output    = DeModulator(RR,K);

    msgr      = ones(size(output));
    idx       = find(output<=0);
    msgr(idx) = 0;

    len         = length(find(signal==msgr));
    errrate(i,j)= 1-len/length(signal);
    %没有相位补偿
    output2     = DeModulator(signal_receive2,K);

    msgr2       = ones(size(output2));
    idx2        = find(output2<=0);
    msgr2(idx2) = 0;

    len2      = length(find(signal==msgr2));
    errrate2(i,j)= 1-len2/length(signal);

end

end

figure;
semilogy(SNR,mean(errrate2,2),'b-o');
hold on
semilogy(SNR,mean(errrate,2),'r-s');
grid on
xlabel('SNR');
ylabel('误码率');
legend('QPSK无相位补偿误码率','QPSK相位补偿误码率');
```

相关文章
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
27天前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
73 22
|
2月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
207 6
|
6天前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
69 40
|
1天前
|
机器学习/深度学习 运维 资源调度
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
15 6
|
1天前
|
机器学习/深度学习 自然语言处理 监控
深入探索:深度学习在时间序列预测中的强大应用与实现
时间序列分析是数据科学和机器学习中一个重要的研究领域,广泛应用于金融市场、天气预报、能源管理、交通预测、健康监控等多个领域。时间序列数据具有顺序相关性,通常展示出时间上较强的依赖性,因此简单的传统回归模型往往不能捕捉其中复杂的动态特征。深度学习通过其非线性建模能力和层次结构的特征提取能力,能够有效地捕捉复杂的时间相关性和非线性动态变化模式,从而在时间序列分析中展现出极大的潜力。

热门文章

最新文章