t-sne方法:观察类别区分度

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 背景:一个二分类任务。目的:尝试使用t-sne方法,观察这两个类别是否是可分的。

样本集存储在csv文件中,链接:https://gitee.com/collisionandconflict/project_1_2_-svm_-binary_-classification_-task/blob/master/totalFeaturesForRight_Lee20240111.csv

t-sne 的python实现程序为:https://gitee.com/collisionandconflict/project_1_2_-svm_-binary_-classification_-task/blob/master/t_Sne_Lee20240220.py

程序运行的输出图片如下:
image.png

观察输出,这种0与1混在一起的情况,是否意味着无法分开,即:两个类本身没有区分性。

目录
相关文章
|
6月前
|
数据可视化 算法
R语言近似贝叶斯计算MCMC(ABC-MCMC)轨迹图和边缘图可视化
R语言近似贝叶斯计算MCMC(ABC-MCMC)轨迹图和边缘图可视化
|
13天前
贝叶斯统计中常见先验分布选择方法总结
本文详细介绍了贝叶斯统计中三种常见的先验分布选择方法:经验贝叶斯方法、信息先验和无信息/弱信息先验。
36 3
贝叶斯统计中常见先验分布选择方法总结
|
2月前
|
自然语言处理 数据挖掘
数据特征包括分布特征、统计特征、对比特征、帕累托特征和文本特征
数据特征包括分布特征、统计特征、对比特征、帕累托特征和文本特征
90 4
|
6月前
|
机器学习/深度学习 算法 数据可视化
Python用KNN(K-近邻)回归、分类、异常值检测预测房价、最优K值选取、误差评估可视化
Python用KNN(K-近邻)回归、分类、异常值检测预测房价、最优K值选取、误差评估可视化
|
6月前
|
数据可视化 索引 Python
数据分享|Python用PyMC3贝叶斯模型平均BMA:采样、信息准则比较和预测可视化灵长类动物的乳汁成分数据
数据分享|Python用PyMC3贝叶斯模型平均BMA:采样、信息准则比较和预测可视化灵长类动物的乳汁成分数据
|
6月前
|
机器学习/深度学习 算法
R语言非参数方法:使用核回归平滑估计和K-NN(K近邻算法)分类预测心脏病数据
R语言非参数方法:使用核回归平滑估计和K-NN(K近邻算法)分类预测心脏病数据
|
6月前
|
数据可视化 Python
PYTHON 贝叶斯概率推断序列数据概率和先验、似然和后验图可视化
PYTHON 贝叶斯概率推断序列数据概率和先验、似然和后验图可视化
|
6月前
|
机器学习/深度学习 XML 编解码
ENVI实现最小距离法、最大似然法、支持向量机遥感图像监督分类与分类后处理操作
ENVI实现最小距离法、最大似然法、支持向量机遥感图像监督分类与分类后处理操作
292 1
|
算法 数据库
KNN算法的简单应用将一维数据集分类——打开就可以跑
KNN算法的简单应用将一维数据集分类——打开就可以跑
|
机器学习/深度学习 算法 开发者
特征生成(特征创建)
特征生成(特征创建)