【极数系列】Flink集成KafkaSink & 实时输出数据(11)

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 【极数系列】Flink集成KafkaSink & 实时输出数据(11)


01 引言

KafkaSink 可将数据流写入一个或多个 Kafka topic
实战源码地址,一键下载可用:https://gitee.com/shawsongyue/aurora.git
模块:aurora_flink_connector_kafka
主类:KafkaSinkStreamingJob

02 连接器依赖

2.1 kafka连接器依赖

<!--kafka依赖 start-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka</artifactId>
            <version>3.0.2-1.18</version>
        </dependency>
        <!--kafka依赖 end-->

2.2 base基础依赖

若是不引入该依赖,项目启动直接报错:Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/flink/connector/base/source/reader/RecordEmitter
<dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-base</artifactId>
            <version>1.18.0</version>
        </dependency>

03 使用方法

Kafka sink 提供了构建类来创建 KafkaSink 的实例

DataStream<String> stream = ...;
        
KafkaSink<String> sink = KafkaSink.<String>builder()
        .setBootstrapServers(brokers)
        .setRecordSerializer(KafkaRecordSerializationSchema.builder()
            .setTopic("topic-name")
            .setValueSerializationSchema(new SimpleStringSchema())
            .build()
        )
        .setDeliveryGuarantee(DeliveryGuarantee.AT_LEAST_ONCE)
        .build();
        
stream.sinkTo(sink);
以下属性在构建 KafkaSink 时是必须指定的:
Bootstrap servers, setBootstrapServers(String)
消息序列化器(Serializer), setRecordSerializer(KafkaRecordSerializationSchema)
如果使用DeliveryGuarantee.EXACTLY_ONCE 的语义保证,则需要使用 setTransactionalIdPrefix(String)

04 序列化器

  1. 构建时需要提供 KafkaRecordSerializationSchema 来将输入数据转换为 Kafka 的 ProducerRecord。Flink 提供了 schema 构建器 以提供一些通用的组件,例如消息键(key)/消息体(value)序列化、topic 选择、消息分区,同样也可以通过实现对应的接口来进行更丰富的控制。
  2. 其中消息体(value)序列化方法和 topic 的选择方法是必须指定的,此外也可以通过 setKafkaKeySerializer(Serializer)setKafkaValueSerializer(Serializer) 来使用 Kafka 提供而非 Flink 提供的序列化器
KafkaRecordSerializationSchema.builder()
    .setTopicSelector((element) -> {<your-topic-selection-logic>})
    .setValueSerializationSchema(new SimpleStringSchema())
    .setKeySerializationSchema(new SimpleStringSchema())
    .setPartitioner(new FlinkFixedPartitioner())
    .build();

05 容错恢复

`KafkaSink` 总共支持三种不同的语义保证(`DeliveryGuarantee`)。对于 `DeliveryGuarantee.AT_LEAST_ONCE` 和 `DeliveryGuarantee.EXACTLY_ONCE`,Flink checkpoint 必须启用。默认情况下 `KafkaSink` 使用 `DeliveryGuarantee.NONE`。 以下是对不同语义保证的解释:
  • DeliveryGuarantee.NONE 不提供任何保证:消息有可能会因 Kafka broker 的原因发生丢失或因 Flink 的故障发生重复。
  • DeliveryGuarantee.AT_LEAST_ONCE: sink 在 checkpoint 时会等待 Kafka 缓冲区中的数据全部被 Kafka producer 确认。消息不会因 Kafka broker 端发生的事件而丢失,但可能会在 Flink 重启时重复,因为 Flink 会重新处理旧数据。
  • DeliveryGuarantee.EXACTLY_ONCE: 该模式下,Kafka sink 会将所有数据通过在 checkpoint 时提交的事务写入。因此,如果 consumer 只读取已提交的数据(参见 Kafka consumer 配置 isolation.level),在 Flink 发生重启时不会发生数据重复。然而这会使数据在 checkpoint 完成时才会可见,因此请按需调整 checkpoint 的间隔。请确认事务 ID 的前缀(transactionIdPrefix)对不同的应用是唯一的,以保证不同作业的事务 不会互相影响!此外,强烈建议将 Kafka 的事务超时时间调整至远大于 checkpoint 最大间隔 + 最大重启时间,否则 Kafka 对未提交事务的过期处理会导致数据丢失。

05 指标监控

Kafka sink 会在不同的范围(Scope)中汇报下列指标。

范围 指标 用户变量 描述 类型
算子 currentSendTime n/a 发送最近一条数据的耗时。该指标反映最后一条数据的瞬时值。 Gauge

06 项目源码实战

6.1 包结构

6.2 pom.xml依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>com.xsy</groupId>
    <artifactId>aurora_flink_connector_kafka</artifactId>
    <version>1.0-SNAPSHOT</version>
    <!--属性设置-->
    <properties>
        <!--java_JDK版本-->
        <java.version>11</java.version>
        <!--maven打包插件-->
        <maven.plugin.version>3.8.1</maven.plugin.version>
        <!--编译编码UTF-8-->
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <!--输出报告编码UTF-8-->
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
        <!--json数据格式处理工具-->
        <fastjson.version>1.2.75</fastjson.version>
        <!--log4j版本-->
        <log4j.version>2.17.1</log4j.version>
        <!--flink版本-->
        <flink.version>1.18.0</flink.version>
        <!--scala版本-->
        <scala.binary.version>2.11</scala.binary.version>
    </properties>
    <!--通用依赖-->
    <dependencies>
        <!-- json -->
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>${fastjson.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-java -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!--================================集成外部依赖==========================================-->
        <!--集成日志框架 start-->
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-slf4j-impl</artifactId>
            <version>${log4j.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-api</artifactId>
            <version>${log4j.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-core</artifactId>
            <version>${log4j.version}</version>
        </dependency>
        <!--集成日志框架 end-->
        <!--kafka依赖 start-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka</artifactId>
            <version>3.0.2-1.18</version>
        </dependency>
        <!--kafka依赖 end-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-base</artifactId>
            <version>1.18.0</version>
        </dependency>
    </dependencies>
    <!--编译打包-->
    <build>
        <finalName>${project.name}</finalName>
        <!--资源文件打包-->
        <resources>
            <resource>
                <directory>src/main/resources</directory>
            </resource>
            <resource>
                <directory>src/main/java</directory>
                <includes>
                    <include>**/*.xml</include>
                </includes>
            </resource>
        </resources>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>3.1.1</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <artifactSet>
                                <excludes>
                                    <exclude>org.apache.flink:force-shading</exclude>
                                    <exclude>org.google.code.flindbugs:jar305</exclude>
                                    <exclude>org.slf4j:*</exclude>
                                    <excluder>org.apache.logging.log4j:*</excluder>
                                </excludes>
                            </artifactSet>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                            <transformers>
                                <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass>org.aurora.KafkaStreamingJob</mainClass>
                                </transformer>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
        <!--插件统一管理-->
        <pluginManagement>
            <plugins>
                <!--maven打包插件-->
                <plugin>
                    <groupId>org.springframework.boot</groupId>
                    <artifactId>spring-boot-maven-plugin</artifactId>
                    <version>${spring.boot.version}</version>
                    <configuration>
                        <fork>true</fork>
                        <finalName>${project.build.finalName}</finalName>
                    </configuration>
                    <executions>
                        <execution>
                            <goals>
                                <goal>repackage</goal>
                            </goals>
                        </execution>
                    </executions>
                </plugin>
                <!--编译打包插件-->
                <plugin>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <version>${maven.plugin.version}</version>
                    <configuration>
                        <source>${java.version}</source>
                        <target>${java.version}</target>
                        <encoding>UTF-8</encoding>
                        <compilerArgs>
                            <arg>-parameters</arg>
                        </compilerArgs>
                    </configuration>
                </plugin>
            </plugins>
        </pluginManagement>
    </build>
    <!--配置Maven项目中需要使用的远程仓库-->
    <repositories>
        <repository>
            <id>aliyun-repos</id>
            <url>https://maven.aliyun.com/nexus/content/groups/public/</url>
            <snapshots>
                <enabled>false</enabled>
            </snapshots>
        </repository>
    </repositories>
    <!--用来配置maven插件的远程仓库-->
    <pluginRepositories>
        <pluginRepository>
            <id>aliyun-plugin</id>
            <url>https://maven.aliyun.com/nexus/content/groups/public/</url>
            <snapshots>
                <enabled>false</enabled>
            </snapshots>
        </pluginRepository>
    </pluginRepositories>
</project>

6.3 配置文件

(1)application.properties

#kafka集群地址
kafka.bootstrapServers=localhost:9092
#kafka主题
kafka.topic=topic_a
#kafka消费者组
kafka.group=aurora_group

(2)log4j2.properties

rootLogger.level=INFO
rootLogger.appenderRef.console.ref=ConsoleAppender
appender.console.name=ConsoleAppender
appender.console.type=CONSOLE
appender.console.layout.type=PatternLayout
appender.console.layout.pattern=%d{HH:mm:ss,SSS} %-5p %-60c %x - %m%n
log.file=D:\\tmprootLogger.level=INFO
rootLogger.appenderRef.console.ref=ConsoleAppender
appender.console.name=ConsoleAppender
appender.console.type=CONSOLE
appender.console.layout.type=PatternLayout
appender.console.layout.pattern=%d{HH:mm:ss,SSS} %-5p %-60c %x - %m%n
log.file=D:\\tmp

6.4 创建sink作业

package com.aurora;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.connector.base.DeliveryGuarantee;
import org.apache.flink.connector.kafka.sink.KafkaRecordSerializationSchema;
import org.apache.flink.connector.kafka.sink.KafkaSink;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.KafkaSourceBuilder;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.runtime.state.StateBackend;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.ArrayList;
/**
 * @author 浅夏的猫
 * @description kafka 连接器使用demo作业
 * @datetime 22:21 2024/2/1
 */
public class KafkaSinkStreamingJob {
    private static final Logger logger = LoggerFactory.getLogger(KafkaSinkStreamingJob.class);
    public static void main(String[] args) throws Exception {
        //===============1.获取参数==============================
        //定义文件路径
        String propertiesFilePath = "E:\\project\\aurora_dev\\aurora_flink_connector_kafka\\src\\main\\resources\\application.properties";
        //方式一:直接使用内置工具类
        ParameterTool paramsMap = ParameterTool.fromPropertiesFile(propertiesFilePath);
        //================2.初始化kafka参数==============================
        String bootstrapServers = paramsMap.get("kafka.bootstrapServers");
        String topic = paramsMap.get("kafka.topic");
        KafkaSink<String> sink = KafkaSink.<String>builder()
                //设置kafka地址
                .setBootstrapServers(bootstrapServers)
                //设置消息序列号方式
                .setRecordSerializer(KafkaRecordSerializationSchema.builder()
                        .setTopic(topic)
                        .setValueSerializationSchema(new SimpleStringSchema())
                        .build()
                )
                //至少一次
                .setDeliveryGuarantee(DeliveryGuarantee.AT_LEAST_ONCE)
                .build();
        //=================4.创建Flink运行环境=================
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        ArrayList<String> listData = new ArrayList<>();
        listData.add("test");
        listData.add("java");
        listData.add("c++");
        DataStreamSource<String> dataStreamSource = env.fromCollection(listData);
        //=================5.数据简单处理======================
        SingleOutputStreamOperator<String> flatMap = dataStreamSource.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public void flatMap(String record, Collector<String> collector) throws Exception {
                logger.info("正在处理kafka数据:{}", record);
                collector.collect(record);
            }
        });
        //数据输出算子
        flatMap.sinkTo(sink);
        //=================6.启动服务=========================================
        //开启flink的checkpoint功能:每隔1000ms启动一个检查点(设置checkpoint的声明周期)
        env.enableCheckpointing(1000);
        //checkpoint高级选项设置
        //设置checkpoint的模式为exactly-once(这也是默认值)
        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
        //确保检查点之间至少有500ms间隔(即checkpoint的最小间隔)
        env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
        //确保检查必须在1min之内完成,否则就会被丢弃掉(即checkpoint的超时时间)
        env.getCheckpointConfig().setCheckpointTimeout(60000);
        //同一时间只允许操作一个检查点
        env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
        //程序即使被cancel后,也会保留checkpoint数据,以便根据实际需要恢复到指定的checkpoint
        env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
        //设置statebackend,指定state和checkpoint的数据存储位置(checkpoint的数据必须得有一个可以持久化存储的地方)
        env.getCheckpointConfig().setCheckpointStorage("file:///E:/flink/checkPoint");
        env.execute();
    }
}


相关文章
|
1月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
492 43
|
1月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。
168 0
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
|
5月前
|
存储 消息中间件 Kafka
基于 Flink 的中国电信星海时空数据多引擎实时改造
本文整理自中国电信集团大数据架构师李新虎老师在Flink Forward Asia 2024的分享,围绕星海时空智能系统展开,涵盖四个核心部分:时空数据现状、实时场景多引擎化、典型应用及未来展望。系统日处理8000亿条数据,具备亚米级定位能力,通过Flink多引擎架构解决数据膨胀与响应时效等问题,优化资源利用并提升计算效率。应用场景包括运动状态识别、个体行为分析和群智感知,未来将推进湖仓一体改造与三维时空服务体系建设,助力数字化转型与智慧城市建设。
629 3
基于 Flink 的中国电信星海时空数据多引擎实时改造
|
1月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
994 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
2月前
|
存储 消息中间件 搜索推荐
京东零售基于Flink的推荐系统智能数据体系
摘要:本文整理自京东零售技术专家张颖老师,在 Flink Forward Asia 2024 生产实践(二)专场中的分享,介绍了基于Flink构建的推荐系统数据,以及Flink智能体系带来的智能服务功能。内容分为以下六个部分: 推荐系统架构 索引 样本 特征 可解释 指标 Tips:关注「公众号」回复 FFA 2024 查看会后资料~
226 1
京东零售基于Flink的推荐系统智能数据体系
|
1月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
369 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
10月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
3248 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
10月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
431 56

热门文章

最新文章