【MATLAB 】 VMD-ARIMA联合时序预测算法,科研创新优选算法

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
大数据开发治理平台 DataWorks,不限时长
简介: 【MATLAB 】 VMD-ARIMA联合时序预测算法,科研创新优选算法

【MATLAB 】 VMD-ARIMA联合时序预测算法,科研创新优选算法

微信公众号由于改变了推送规则,为了每次新的推送可以在第一时间出现在您的订阅列表中,记得将本公众号设为星标或置顶哦~

有意向获取代码,请转文末观看代码获取方式~

1  VMD分解算法

VMD 分解又叫变分模态分解,英文全称为Variational Mode Decomposition。

VMD是一种新型的信号分解方法,它是通过使用变分推断方法将信号分解为一组局部振动模式,每个模式包含多个频率组件。VMD的主要步骤如下:

  1. 将原始信号进行多次低通滤波,得到多个频带信号。
  2. 对每个频带信号进行变分推断,得到该频带信号的局部振动模式。
  3. 将所有频带信号对应的局部振动模式相加,得到原始信号的 VMD 分解。 VMD 分解具有以下优点:能够自动提取信号的局部特征,避免了传统分解方法中需要手动选择基函数的问题;能够处理非线性和非平稳信号,并且不会产生模态重叠的问题。因此,VMD 在信号处理、图像处理和模式识别等领域也得到了广泛的应用。

关于简短的代码视频教程均可关注B站、小红书、知乎同名账号(Lwcah)观看教程~

MATLAB 信号分解第七期-VMD 分解:

https://mbd.pub/o/bread/ZJWZmppu

信号分解全家桶详情请参见:

https://mbd.pub/o/author-aWWWnHBsYw==/work

2 ARIMA时序预测算法

ARIMA(Autoregressive Integrated Moving Average)模型是一种基于时间序列分析的预测模型,可以用于分析和预测具有时间依赖性和随机性的数据。ARIMA 模型最初是由 Box 和 Jenkins 等人于 1976 年提出的,是一种广泛使用的时间序列模型,被用于生产和金融等领域的数据预测。 ARIMA 模型的核心思想是对时间序列数据进行差分,使得序列变得平稳,然后通过自回归(AR)和移动平均(MA)的组合来建立模型,并利用该模型进行预测。ARIMA 模型中的“AR”表示自回归,即当前数据与前面若干时刻的数据相关;“I”表示差分,即对数据进行差分使其平稳;“MA”表示移动平均,即当前数据与前面若干时刻的误差相关。 ARIMA 模型的建立过程包括模型识别、参数估计和模型检验三个步骤。在模型识别阶段,需要确定 ARIMA 模型的阶数和差分次数;在参数估计阶段,需要对模型进行参数估计;在模型检验阶段,需要对模型进行检验并判断模型的预测精度是否满足要求。 ARIMA 模型的优点是可以充分利用时间序列数据的历史信息进行预测,能够适应多种不同类型的时间序列数据,并且模型具有较好的解释性。但是 ARIMA 模型也有一些缺点,如对于非平稳的时间序列数据需要进行差分处理,同时模型的参数估计过程较为繁琐。

MATLAB | 时间序列预测 | ARIMA 预测模型:

https://mbd.pub/o/bread/ZJaXlJpw

5 种时序预测方案全家桶详情请参见:

https://mbd.pub/o/bread/ZJaXlJts

3 VMD-ARIMA联合时序预测算法

接下来详细介绍一下最新的 VMD-ARIMA 联合时序预测算法的原理和思路。

信号分解可以将原始数据分解为 N 层 imf 分量,然后本研究对每层的 imf 分量展开 ARIMA 时序预测,并将预测后的 imf 分量的预测值进行重构,即可得到 VMD-ARIMA 联合时序预测值。

将该VMD-ARIMA 联合时序预测值与单纯的 ARIMA 时序预测值分别与真实值进行对比,求其相关系数、均方根误差以及平均误差可以发现,VMD-ARIMA 联合时序预测算法有较好的预测效果。究其原因不难发现,信号分解是将原始数据分解为不同频率的数据,也即每一层imf分量的频率大致相同,是具有较好的周期性和规律性的数据、因而当采用 ARIMA 时序预测算法对每一层 imf 分量展开预测的时候其预测效果会更加接近真值。

如下为预测过程中的一些示意图。

如下为简短的视频操作教程。

VMD-ARIMA 联合时序预测算法代码获取:

https://mbd.pub/o/bread/ZJqcmZ5p

关于代码有任何疑问,均可关注公众号(Lwcah)后,后台回复关键词:微信号。

获取 up 的个人微信号,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


1、感谢关注 Lwcah 的个人公众号,有关资源获取,请公众号后台发送推文末的关键词,自助获取。

2、若要添加个人微信号,请后台发送关键词:微信号。

3、若要进微信群:Lwcah 科研技巧群 3。请添加个人微信号后进群(大家沉浸式科研,广告勿扰),不定时更新科研技巧类推文。可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。


记得关注公众号,并设为星标哦~谢谢啦~


目录
相关文章
|
9天前
|
算法
【优选算法专栏】专题九:链表--------两两交换链表中的节点
【优选算法专栏】专题九:链表--------两两交换链表中的节点
17 0
|
27天前
|
传感器 算法 计算机视觉
基于肤色模型和中值滤波的手部检测算法FPGA实现,包括tb测试文件和MATLAB辅助验证
该内容是关于一个基于肤色模型和中值滤波的手部检测算法的描述,包括算法的运行效果图和所使用的软件版本(matlab2022a, vivado2019.2)。算法分为肤色分割和中值滤波两步,其中肤色模型在YCbCr色彩空间定义,中值滤波用于去除噪声。提供了一段核心程序代码,用于处理图像数据并在FPGA上实现。最终,检测结果输出到"hand.txt"文件。
|
4天前
|
文字识别 算法 计算机视觉
图像倾斜校正算法的MATLAB实现:图像倾斜角检测及校正
图像倾斜校正算法的MATLAB实现:图像倾斜角检测及校正
12 0
|
7天前
|
机器学习/深度学习 算法
【MATLAB】GA_ELM神经网络时序预测算法
【MATLAB】GA_ELM神经网络时序预测算法
278 9
|
8天前
|
算法
优选算法|【双指针】|202.快乐数
优选算法|【双指针】|202.快乐数
|
9天前
|
机器学习/深度学习 算法
【优选算法专栏】专题四:前缀和(二)
【优选算法专栏】专题四:前缀和(二)
21 1
|
9天前
|
算法
【优选算法专栏】专题一:双指针--------1.移动0
【优选算法专栏】专题一:双指针--------1.移动0
19 0
|
23天前
|
算法 关系型数据库 MySQL
大厂算法指南:优选算法 ——双指针篇(下)
大厂算法指南:优选算法 ——双指针篇(下)
23 0
|
27天前
|
算法
m基于log-MPA检测算法的SCMA通信链路matlab误码率仿真
MATLAB 2022a仿真实现了稀疏码多址接入(SCMA)算法,该算法利用码本稀疏性实现多用户高效接入。每个用户从码本中选取码字发送,接收端采用Log-MPA算法进行多用户检测。由于MAP检测计算复杂度高,故采用Log-MPA降低复杂性。仿真展示了不同迭代次数(1, 5, 10, 30)对误码率(BER)的影响,通过比较各次迭代的BER曲线,研究算法性能与迭代次数的关系。
18 0
|
29天前
|
算法 搜索推荐
基于遗传优化的协同过滤推荐算法matlab仿真
该内容是关于推荐系统和算法的描述。使用Matlab2022a执行的算法生成了推荐商品ID列表,显示了协同过滤在个性化推荐中的应用。用户兴趣模型通过获取用户信息并建立数学模型来提高推荐性能。程序片段展示了遗传算法(GA)的迭代过程,确定支持度阈值,并基于关联规则生成推荐商品ID。最终结果是推荐的商品ID列表,显示了算法的收敛和支持值。