Python 快速排序:原理、使用场景与实现方法

简介: 本文主要介绍了Python 快速排序:原理、使用场景与实现方法

引言

快速排序(Quick Sort)是由英国计算机科学家托尼·霍尔于1960年提出的一种高效的排序算法。其主要特点在于采用了分治策略,通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

quickSort.gif

一、快速排序原理

  1. 选择基准元素:首先在待排序数组中选取一个基准元素(通常选择第一个或最后一个元素,也可以采用随机选择的方式以提高平均性能)。

  2. 分区操作:重新排列数组,使得基准元素之前的所有元素都不大于它,之后的所有元素都不小于它。这个过程称为分区操作,可以通过两个指针从两端向中间移动,并交换不满足条件的元素位置来完成。

  3. 递归排序:然后分别对基准元素左侧和右侧的子数组进行快速排序,直至所有子数组只有一个元素或者为空。

二、快速排序步骤详解

假设有一个无序数组[5, 3, 8, 6, 7, 2],按照快速排序的过程:

  1. 选择基准元素:我们选择第一个元素5作为基准。
  2. 分区操作
    • 从右向左找到第一个小于基准的元素2,从左向右找到第一个大于基准的元素8,交换它们的位置,得到[2, 3, 5, 6, 7, 8]
    • 继续左右扫描,交换53,得到最终分区结果[2, 3, 5, 6, 7, 8],此时基准元素位于正确位置
  3. 递归排序
    • [2, 3]子数组进行快速排序
    • [6, 7, 8]子数组进行快速排序

三、快速排序代码实现

以下是一个简单的快速排序实现:

def quick_sort(arr):
    if len(arr) <= 1:
        return arr

    pivot = arr[len(arr) // 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]

    return quick_sort(left) + middle + quick_sort(right)

# 示例调用
unsorted_array = [5, 3, 8, 6, 7, 2]
sorted_array = quick_sort(unsorted_array)

四、快速排序的使用场景

  • 大规模数据排序:由于快速排序的平均时间复杂度为O(n log n),对于大规模数据排序任务,快速排序具有较高的效率,尤其是在内部实现优化后,如“三数取中法”选择基准等技巧,能进一步提升性能。
  • 教育示例:快速排序展示了分治策略在解决问题上的强大威力,是学习、竞赛中广泛使用的经典实例。
  • 实际应用:在很多编程语言的标准库中,快速排序被用于实现数组和列表的排序功能,例如C++ STL中的std::sort函数就采用了快速排序及其改进版。

需要注意的是,在最坏情况下,当输入数据已经完全有序或逆序时,快速排序的时间复杂度会退化到O(n²),但这种情况在实际应用中相对较少见。为了规避这一问题,可以采用随机化选择基准元素的方法,使算法在概率意义下有较好的表现。

目录
相关文章
|
24天前
|
运维 监控 算法
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
556 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
|
1月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
104 7
|
2月前
|
JSON 数据可视化 API
Python 中调用 DeepSeek-R1 API的方法介绍,图文教程
本教程详细介绍了如何使用 Python 调用 DeepSeek 的 R1 大模型 API,适合编程新手。首先登录 DeepSeek 控制台获取 API Key,安装 Python 和 requests 库后,编写基础调用代码并运行。文末包含常见问题解答和更简单的可视化调用方法,建议收藏备用。 原文链接:[如何使用 Python 调用 DeepSeek-R1 API?](https://apifox.com/apiskills/how-to-call-the-deepseek-r1-api-using-python/)
|
3天前
|
Python
解决Python报错:DataFrame对象没有concat属性的多种方法(解决方案汇总)
总的来说,解决“DataFrame对象没有concat属性”的错误的关键是理解concat函数应该如何正确使用,以及Pandas库提供了哪些其他的数据连接方法。希望这些方法能帮助你解决问题。记住,编程就像是解谜游戏,每一个错误都是一个谜题,解决它们需要耐心和细心。
34 15
|
10天前
|
Python
[oeasy]python086方法_method_函数_function_区别
本文详细解析了Python中方法(method)与函数(function)的区别。通过回顾列表操作如`append`,以及随机模块的使用,介绍了方法作为类的成员需要通过实例调用的特点。对比内建函数如`print`和`input`,它们无需对象即可直接调用。总结指出方法需基于对象调用且包含`self`参数,而函数独立存在无需`self`。最后提供了学习资源链接,方便进一步探索。
47 17
|
4天前
|
存储 缓存 文件存储
uv安装python及其依赖的加速方法
国内在使用uv的时候,可能会涉及到装python的速度太慢的问题,为了解决这个问题,可以使用`UV_PYTHON_INSTALL_MIRROR`这个环境变量。除此以外,对于多人协作场景,`UV_CACHE_DIR`也是一个有用的环境变量。本文会介绍这两个变量。
148 9
|
16天前
|
开发者 索引 Python
从命名约定到特殊方法,Python下划线符号的妙用!
下划线(`_`)是Python开发者日常接触的重要符号,其含义和应用场景多样。本文全面解析了Python中下划线的不同用法,包括单下划线作为临时变量、国际化翻译函数、交互式解释器特殊变量;单下划线前缀表示保护成员;单下划线后缀避免关键字冲突;双下划线前缀触发名称改写;双下划线前后缀定义特殊方法等。此外,还介绍了数字分隔符、模式匹配通配符等新特性,并总结了下划线使用的最佳实践与常见问题解答。通过本文,读者可深入了解下划线在Python中的多重角色及其设计哲学。
47 2
|
3月前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
102 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
3月前
|
人工智能 自然语言处理 算法
随机的暴力美学蒙特卡洛方法 | python小知识
蒙特卡洛方法是一种基于随机采样的计算算法,广泛应用于物理学、金融、工程等领域。它通过重复随机采样来解决复杂问题,尤其适用于难以用解析方法求解的情况。该方法起源于二战期间的曼哈顿计划,由斯坦尼斯拉夫·乌拉姆等人提出。核心思想是通过大量随机样本来近似真实结果,如估算π值的经典示例。蒙特卡洛树搜索(MCTS)是其高级应用,常用于游戏AI和决策优化。Python中可通过简单代码实现蒙特卡洛方法,展示其在文本生成等领域的潜力。随着计算能力提升,蒙特卡洛方法的应用范围不断扩大,成为处理不确定性和复杂系统的重要工具。
132 21
|
3月前
|
数据挖掘 数据处理 开发者
Python3 自定义排序详解:方法与示例
Python的排序功能强大且灵活,主要通过`sorted()`函数和列表的`sort()`方法实现。两者均支持`key`参数自定义排序规则。本文详细介绍了基础排序、按字符串长度或元组元素排序、降序排序、多条件排序及使用`lambda`表达式和`functools.cmp_to_key`进行复杂排序。通过示例展示了如何对简单数据类型、字典、类对象及复杂数据结构(如列车信息)进行排序。掌握这些技巧可以显著提升数据处理能力,为编程提供更强大的支持。
85 10

热门文章

最新文章