YOLOv8改进 | 主干篇 | 低照度图像增强网络SCINet改进黑暗目标检测(全网独家首发)

简介: YOLOv8改进 | 主干篇 | 低照度图像增强网络SCINet改进黑暗目标检测(全网独家首发)

一、本文介绍

本文给大家带来的改进机制是低照度图像增强网络SCINet,SCINet(自校正照明网络)是一种专为低光照图像增强设计的框架。它通过级联照明学习过程和权重共享机制来处理图像,优化了照明部分以提升图像质量。我将该网络集成在YOLOv8的主干上针对于图像的输入进行增强,同时该网络的并不会增加参数和计算量,基本和普通的网络结构保持一致,同时该结构支持自定义调节层数,来控制图像增强的效果 ,非常适合想要在黑夜目标检测领域发表文章的读者,该基本网络不会影响模型的速度。

欢迎大家订阅我的专栏一起学习YOLO!

image.png

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制
专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

二、SCINet原理


image.png

image.png


2.2 SCINet原理

SCINet(自校正照明网络)是一种专为低光照图像增强设计的框架。它通过级联照明学习过程和权重共享机制来处理图像,优化了照明部分以提升图像质量。SCINet引入了自校正模块,用于减少计算负担并提高结果的稳定性。此外,其无监督训练损失功能使得模型能够适应不同场景。SCINet还显示出对简单操作设置的稳定性能适应性,以及可以提升现有照明增强工作性能的普适性。

SCINet的基本原理可以分为以下几个主要部分:

1. 级联照明学习与权重共享: SCINet采用了一个级联的照明学习过程,其中各个阶段共享权重。这种设计旨在优化照明组件,从而提升低光照图像的增强效果。

2. 自校正模块: 为了减少计算负担并提高暴露稳定性,SCINet构建了一个自校正模块。这个模块能够使每个阶段的结果收敛,从而在测试阶段仅需使用单个基础块。

3. 无监督训练损失: 作者定义了一种无监督训练损失来约束自校正模块下每个阶段的输出,使模型能够适应多种场景。

注意:YOLO网络只涉及到“级联照明学习与权重共享”,所以本篇文章着重介绍其级联照明学习与权重共享的相关内容。

2.3 级联照明学习与权重共享

级联照明学习与权重共享是SCINet的核心特性之一,主要包含以下几个方面:

1. 级联过程:在级联照明学习中,模型由多个阶段组成,每个阶段都对输入图像的照明进行估计。这种多阶段的处理方式有助于逐步改善图像亮度,每个阶段都在前一个阶段的基础上进一步提升图像质量。

2. 权重共享:在这些阶段中,模型的参数(权重)是共享的。这意味着,尽管每个阶段都执行相似的任务,但它们使用相同的模型参数来执行这些任务。权重共享可以减少模型的整体参数数量,从而减少了模型的复杂性和过拟合的风险。

3. 自校正模块:在每个阶段之后,一个自校正模块被用来校正当前阶段的输出。这一校正确保了随着级联过程的进行,每个阶段的输出逐渐趋于稳定,并且最终输出的质量不会因为过多的处理步骤而退化。

4. 计算效率:由于使用了权重共享,模型在训练时可以有效地学习如何处理低光照图像。在测试阶段,只需使用单个照明估计模块,这大大简化了模型并提高了推理速度。

5. 性能提升:级联照明学习与权重共享的结合使得模型不仅在处理单一图像时表现出色,也能够适应不同的低光照条件和场景,提升了模型的泛化能力和实际应用价值。

下图为大家展示了SCINet的整体框架,特别是在训练阶段包括照明估计和自校正模块两部分。

自校正模块的输出被添加到原始的低光照输入中,作为下一阶段照明估计的输入。这两个模块在整个训练过程中共享参数。在测试阶段,仅使用单个照明估计模块。这与SCINet基本原理的第一点和第二点紧密相关,即级联照明学习过程和权重共享以及自校正模块的设计来减少计算负担并提高结果的稳定性。

目录
相关文章
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
114 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
2月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
63 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
28天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
|
2月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
81 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
2月前
|
算法 计算机视觉 Python
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
本文介绍了如何将ATSS标签分配策略融合到YOLOv8中,以提升目标检测网络的性能。通过修改损失文件、创建ATSS模块文件和调整训练代码,实现了网络的快速涨点。ATSS通过自动选择正负样本,避免了人工设定阈值,提高了模型效率。文章还提供了遇到问题的解决方案,如模块载入和环境配置问题。
90 0
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
|
2月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
141 0
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
|
28天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2融合DWRSDWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取方法分解为区域残差化和语义残差化两步,提高了多尺度信息获取的效率。网络设计了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,分别用于高阶段和低阶段,以充分利用不同感受野的特征图。实验结果表明,DWRSeg在Cityscapes和CamVid数据集上表现出色,以每秒319.5帧的速度在NVIDIA GeForce GTX 1080 Ti上达到72.7%的mIoU,超越了现有方法。代码和模型已公开。
|
2月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
该专栏专注于YOLOv8的 Neck 部分改进,融合了 BiFPN 网络,大幅提升检测性能。BiFPN 通过高效的双向跨尺度连接和加权特征融合,解决了传统 FPN 的单向信息流限制。文章详细介绍了 BiFPN 的原理及其实现方法,并提供了核心代码修改指导。点击链接订阅专栏,每周定时更新,助您快速提升模型效果。推荐指数:⭐️⭐️⭐️⭐️,涨点指数:⭐️⭐️⭐️⭐️。
143 0
|
5月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
|
8天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的知识,并提供一些实用的技巧和建议,帮助读者更好地保护自己的网络安全和信息安全。