YOLOv8改进 | 检测头篇 | 利用DynamicHead增加辅助检测头针对性检测(四头版本)

简介: YOLOv8改进 | 检测头篇 | 利用DynamicHead增加辅助检测头针对性检测(四头版本)

一、本文介绍

本文给大家带来的改进机制是针对性的改进,针对于小目标检测增加P2层针对于大目标检测增加P6层利用DynamicHead(原版本一比一复现,全网独一份,不同于网上魔改版本)进行检测,其中我们增加P2层其拥有更高的分辨率,这使得模型能够更好地捕捉到小尺寸目标的细节。我们增加P6层是一个较低分辨率但具有更大感受野的特征层。对于大尺寸目标,这意味着模型可以更有效地捕捉到整体的结构信息。在这些的基础上我们配合DynamicHead可以使模型根据不同尺寸的目标动态调整其检测策略,进一步提升模型的精度。本文的内容是订阅专栏的读者提出来的,所以大家订阅专栏以后如果有感兴趣的机制均可指定。

欢迎大家订阅我的专栏一起学习YOLO!

image.png

二、增加P2和P5层的好处

我们增加P2和P6层是为了改进目标检测模型,特别是在处理不同大小目标的能力上。

1. 增加P2层的好处:

  • 改善小目标检测:P2层通常有更高的分辨率,这使得模型能够更好地捕捉到小尺寸目标的细节。较高分辨率的特征图能够提供更多的空间信息,有助于检测小物体。
  • 更精细的特征:由于P2层处于网络的较浅层,它能够捕捉到更多的细粒度特征,这对于理解小目标的形状和纹理非常重要。

2. 增加P6层的好处:

  • 提升大目标检测性能:P6层是一个较低分辨率但具有更大感受野的特征层。对于大尺寸目标,这意味着模型可以更有效地捕捉到整体的结构信息。
  • 降低计算复杂度:对于大目标,使用较低分辨率的特征图可以减少计算量,因为处理每个大目标需要的像素数较少。

3. 适应性能力的提升:

  • 使用DynamicHead可以使模型根据不同尺寸的目标动态调整其检测策略,进一步提升模型的泛化能力和适应性,从而进一步提高精度。

总结:增加P2和P6层是为了让模型在处理不同尺寸的目标时更加高效和准确。这种策略特别适用于那些需要同时处理多种尺寸目标的应用场景的数据集,如街景图像分析、无人机视觉监控等。

目录
相关文章
|
计算机视觉
YOLOv5改进 | 检测头篇 | 增加辅助检测头利用AFPN改进Head(附详细修改教程)
YOLOv5改进 | 检测头篇 | 增加辅助检测头利用AFPN改进Head(附详细修改教程)
958 0
|
机器学习/深度学习 编解码 IDE
用于低分辨率图像和小物体的新 CNN 模块SPD-Conv
用于低分辨率图像和小物体的新 CNN 模块SPD-Conv
用于低分辨率图像和小物体的新 CNN 模块SPD-Conv
|
9月前
|
机器学习/深度学习 存储 TensorFlow
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
2235 11
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
|
9月前
|
计算机视觉
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
2015 10
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
|
9月前
|
编解码 算法 计算机视觉
YOLOv11改进策略【Head】| 增加针对 大目标 的检测层 (四个检测头)
YOLOv11改进策略【Head】| 增加针对 大目标 的检测层 (四个检测头)
1573 7
|
10月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
2030 8
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
19934 0
|
机器学习/深度学习 编解码 算法
YOLOv8改进 | 主干网络 | 增加网络结构增强小目标检测能力【独家创新——附结构图】
YOLOv8在小目标检测上存在挑战,因卷积导致信息丢失。本文教程将原网络结构替换为更适合小目标检测的backbone,并提供结构图。通过讲解原理和手把手教学,指导如何修改代码,提供完整代码实现,适合新手实践。文章探讨了大特征图对小目标检测的重要性,如细节保留、定位精度、特征丰富度和上下文信息,并介绍了FPN等方法。YOLOv8流程包括预处理、特征提取、融合和检测。修改后的网络结构增加了上采样和concatenate步骤,以利用更大特征图检测小目标。完整代码和修改后的结构图可在文中链接获取。
|
机器学习/深度学习 编解码 固态存储
YOLOv8改进之更换BiFPN并融合P2小目标检测层
BiFPN(Bi-directional Feature Pyramid Network)是一种用于目标检测和语义分割任务的神经网络架构,旨在改善特征金字塔网络(Feature Pyramid Network, FPN)的性能。FPN是一种用于处理多尺度信息的网络结构,通常与骨干网络(如ResNet或EfficientNet)结合使用,以生成不同分辨率的特征金字塔,从而提高对象检测和分割的性能。BiFPN在此基础上进行了改进,以更好地捕获多尺度信息和提高模型性能。
5909 0
|
并行计算 数据挖掘 PyTorch
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器