YOLOv5改进 | 检测头篇 | CLLAHead分布式焦点损失检测头(全网独家首发)

简介: YOLOv5改进 | 检测头篇 | CLLAHead分布式焦点损失检测头(全网独家首发)

一、本文介绍

本文给大家带来的改进机制是CLLAHead,该检测头为我独家全网首发,该检测头通过多层次的特征提取和整合,利用分布焦点损失损失函数和一种注意力机制,来提高对图像中目标的识别和定位能力。这种结构特别适合于处理复杂的图像场景,其中包含多个不同大小和形状的目标,同时该检测头的参数量非常微量(之前发的一个检测头大家说参数量大,这次发一个参数量小的)。同时欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。

欢迎大家订阅我的专栏一起学习YOLO!

image.png

专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

二、CLLAHead的核心思想

独家创新~

目录
相关文章
|
存储 缓存 开发工具
AppsFlyer 研究(五)延迟深度链接&客户端获取归因数据
AppsFlyer 研究(五)延迟深度链接&客户端获取归因数据
645 0
|
6月前
|
机器学习/深度学习 网络架构 计算机视觉
YOLOv5改进 | 检测头篇 | 利用DBB重参数化模块魔改检测头实现暴力涨点 (附代码 + 详细修改教程)
YOLOv5改进 | 检测头篇 | 利用DBB重参数化模块魔改检测头实现暴力涨点 (附代码 + 详细修改教程)
318 3
|
6月前
|
计算机视觉
YOLOv5改进 | 2023检测头篇 | 利用AFPN改进检测头适配YOLOv5版(全网独家创新)
YOLOv5改进 | 2023检测头篇 | 利用AFPN改进检测头适配YOLOv5版(全网独家创新)
200 0
YOLOv5改进 | 2023检测头篇 | 利用AFPN改进检测头适配YOLOv5版(全网独家创新)
|
6月前
|
计算机视觉
YOLOv5改进 | 2023检测头篇 | 利用AFPN增加小目标检测层(让小目标无所遁形)
YOLOv5改进 | 2023检测头篇 | 利用AFPN增加小目标检测层(让小目标无所遁形)
288 0
|
5月前
|
机器学习/深度学习 算法 安全
基于YOLOv8深度学习的危险区域人员闯入检测与报警系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、区域闯入
基于YOLOv8深度学习的危险区域人员闯入检测与报警系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、区域闯入
|
6月前
|
人工智能 自然语言处理
微软让MoE长出多个头,大幅提升专家激活率
【5月更文挑战第26天】微软研究团队为解决稀疏混合专家(SMoE)模型激活率低的问题,推出了多头混合专家(MH-MoE)模型。MH-MoE通过多头机制将输入数据划分并分配给多个专家,提高专家激活率,增强模型表达能力。实验显示,该模型在多项任务上性能显著提升,但复杂度增加可能影响训练和推理效率,且优化多头机制与专家分配仍是挑战。[链接](https://arxiv.org/pdf/2404.15045)
57 2
|
6月前
|
机器学习/深度学习
YOLOv5改进 | 检测头篇 | CLLAHead分布焦点检测头(全网独创首发)
YOLOv5改进 | 检测头篇 | CLLAHead分布焦点检测头(全网独创首发)
234 1
|
6月前
|
机器学习/深度学习 编解码 计算机视觉
YOLOv8改进 | 检测头篇 | ASFF改进YOLOv8检测头(全网首发)
YOLOv8改进 | 检测头篇 | ASFF改进YOLOv8检测头(全网首发)
426 1
|
6月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 二次创新篇 | 升级版本Dyhead检测头替换DCNv3 实现完美升级(全网独家首发)
YOLOv8改进 | 二次创新篇 | 升级版本Dyhead检测头替换DCNv3 实现完美升级(全网独家首发)
506 2
|
6月前
|
机器学习/深度学习
YOLOv8改进 | 检测头篇 | CLLAHead分布焦点检测头(全网独创首发)
YOLOv8改进 | 检测头篇 | CLLAHead分布焦点检测头(全网独创首发)
135 0